Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7x-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
18x-9=y
Whakaarohia te whārite tuarua. Tāpirihia te 17 ki te 1, ka 18.
18x-9-y=0
Tangohia te y mai i ngā taha e rua.
18x-y=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
7x-y=0,18x-y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x-y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=y
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{7}y
Whakawehea ngā taha e rua ki te 7.
18\times \frac{1}{7}y-y=9
Whakakapia te \frac{y}{7} mō te x ki tērā atu whārite, 18x-y=9.
\frac{18}{7}y-y=9
Whakareatia 18 ki te \frac{y}{7}.
\frac{11}{7}y=9
Tāpiri \frac{18y}{7} ki te -y.
y=\frac{63}{11}
Whakawehea ngā taha e rua o te whārite ki te \frac{11}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{7}\times \frac{63}{11}
Whakaurua te \frac{63}{11} mō y ki x=\frac{1}{7}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{9}{11}
Whakareatia \frac{1}{7} ki te \frac{63}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{9}{11},y=\frac{63}{11}
Kua oti te pūnaha te whakatau.
7x-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
18x-9=y
Whakaarohia te whārite tuarua. Tāpirihia te 17 ki te 1, ka 18.
18x-9-y=0
Tangohia te y mai i ngā taha e rua.
18x-y=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
7x-y=0,18x-y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&-1\\18&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&-1\\18&-1\end{matrix}\right))\left(\begin{matrix}7&-1\\18&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-1\\18&-1\end{matrix}\right))\left(\begin{matrix}0\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&-1\\18&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-1\\18&-1\end{matrix}\right))\left(\begin{matrix}0\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-1\\18&-1\end{matrix}\right))\left(\begin{matrix}0\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7\left(-1\right)-\left(-18\right)}&-\frac{-1}{7\left(-1\right)-\left(-18\right)}\\-\frac{18}{7\left(-1\right)-\left(-18\right)}&\frac{7}{7\left(-1\right)-\left(-18\right)}\end{matrix}\right)\left(\begin{matrix}0\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{11}&\frac{1}{11}\\-\frac{18}{11}&\frac{7}{11}\end{matrix}\right)\left(\begin{matrix}0\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 9\\\frac{7}{11}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{11}\\\frac{63}{11}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{9}{11},y=\frac{63}{11}
Tangohia ngā huānga poukapa x me y.
7x-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
18x-9=y
Whakaarohia te whārite tuarua. Tāpirihia te 17 ki te 1, ka 18.
18x-9-y=0
Tangohia te y mai i ngā taha e rua.
18x-y=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
7x-y=0,18x-y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7x-18x-y+y=-9
Me tango 18x-y=9 mai i 7x-y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
7x-18x=-9
Tāpiri -y ki te y. Ka whakakore atu ngā kupu -y me y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-11x=-9
Tāpiri 7x ki te -18x.
x=\frac{9}{11}
Whakawehea ngā taha e rua ki te -11.
18\times \frac{9}{11}-y=9
Whakaurua te \frac{9}{11} mō x ki 18x-y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
\frac{162}{11}-y=9
Whakareatia 18 ki te \frac{9}{11}.
-y=-\frac{63}{11}
Me tango \frac{162}{11} mai i ngā taha e rua o te whārite.
y=\frac{63}{11}
Whakawehea ngā taha e rua ki te -1.
x=\frac{9}{11},y=\frac{63}{11}
Kua oti te pūnaha te whakatau.