Whakaoti mō x, y
x=-1
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
7x+y=-9,-3x-y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x+y=-9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=-y-9
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{7}\left(-y-9\right)
Whakawehea ngā taha e rua ki te 7.
x=-\frac{1}{7}y-\frac{9}{7}
Whakareatia \frac{1}{7} ki te -y-9.
-3\left(-\frac{1}{7}y-\frac{9}{7}\right)-y=5
Whakakapia te \frac{-y-9}{7} mō te x ki tērā atu whārite, -3x-y=5.
\frac{3}{7}y+\frac{27}{7}-y=5
Whakareatia -3 ki te \frac{-y-9}{7}.
-\frac{4}{7}y+\frac{27}{7}=5
Tāpiri \frac{3y}{7} ki te -y.
-\frac{4}{7}y=\frac{8}{7}
Me tango \frac{27}{7} mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te -\frac{4}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{7}\left(-2\right)-\frac{9}{7}
Whakaurua te -2 mō y ki x=-\frac{1}{7}y-\frac{9}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{2-9}{7}
Whakareatia -\frac{1}{7} ki te -2.
x=-1
Tāpiri -\frac{9}{7} ki te \frac{2}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=-2
Kua oti te pūnaha te whakatau.
7x+y=-9,-3x-y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right))\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right))\left(\begin{matrix}-9\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&1\\-3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right))\left(\begin{matrix}-9\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right))\left(\begin{matrix}-9\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7\left(-1\right)-\left(-3\right)}&-\frac{1}{7\left(-1\right)-\left(-3\right)}\\-\frac{-3}{7\left(-1\right)-\left(-3\right)}&\frac{7}{7\left(-1\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-9\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{3}{4}&-\frac{7}{4}\end{matrix}\right)\left(\begin{matrix}-9\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-9\right)+\frac{1}{4}\times 5\\-\frac{3}{4}\left(-9\right)-\frac{7}{4}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=-2
Tangohia ngā huānga poukapa x me y.
7x+y=-9,-3x-y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3\times 7x-3y=-3\left(-9\right),7\left(-3\right)x+7\left(-1\right)y=7\times 5
Kia ōrite ai a 7x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
-21x-3y=27,-21x-7y=35
Whakarūnātia.
-21x+21x-3y+7y=27-35
Me tango -21x-7y=35 mai i -21x-3y=27 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y+7y=27-35
Tāpiri -21x ki te 21x. Ka whakakore atu ngā kupu -21x me 21x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
4y=27-35
Tāpiri -3y ki te 7y.
4y=-8
Tāpiri 27 ki te -35.
y=-2
Whakawehea ngā taha e rua ki te 4.
-3x-\left(-2\right)=5
Whakaurua te -2 mō y ki -3x-y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x=3
Me tango 2 mai i ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te -3.
x=-1,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}