Whakaoti mō x, y
x=2
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
7x+8y=30,8x-5y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x+8y=30
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=-8y+30
Me tango 8y mai i ngā taha e rua o te whārite.
x=\frac{1}{7}\left(-8y+30\right)
Whakawehea ngā taha e rua ki te 7.
x=-\frac{8}{7}y+\frac{30}{7}
Whakareatia \frac{1}{7} ki te -8y+30.
8\left(-\frac{8}{7}y+\frac{30}{7}\right)-5y=6
Whakakapia te \frac{-8y+30}{7} mō te x ki tērā atu whārite, 8x-5y=6.
-\frac{64}{7}y+\frac{240}{7}-5y=6
Whakareatia 8 ki te \frac{-8y+30}{7}.
-\frac{99}{7}y+\frac{240}{7}=6
Tāpiri -\frac{64y}{7} ki te -5y.
-\frac{99}{7}y=-\frac{198}{7}
Me tango \frac{240}{7} mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te -\frac{99}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{8}{7}\times 2+\frac{30}{7}
Whakaurua te 2 mō y ki x=-\frac{8}{7}y+\frac{30}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-16+30}{7}
Whakareatia -\frac{8}{7} ki te 2.
x=2
Tāpiri \frac{30}{7} ki te -\frac{16}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=2
Kua oti te pūnaha te whakatau.
7x+8y=30,8x-5y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&8\\8&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&8\\8&-5\end{matrix}\right))\left(\begin{matrix}7&8\\8&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&8\\8&-5\end{matrix}\right))\left(\begin{matrix}30\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&8\\8&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&8\\8&-5\end{matrix}\right))\left(\begin{matrix}30\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&8\\8&-5\end{matrix}\right))\left(\begin{matrix}30\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{7\left(-5\right)-8\times 8}&-\frac{8}{7\left(-5\right)-8\times 8}\\-\frac{8}{7\left(-5\right)-8\times 8}&\frac{7}{7\left(-5\right)-8\times 8}\end{matrix}\right)\left(\begin{matrix}30\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{99}&\frac{8}{99}\\\frac{8}{99}&-\frac{7}{99}\end{matrix}\right)\left(\begin{matrix}30\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{99}\times 30+\frac{8}{99}\times 6\\\frac{8}{99}\times 30-\frac{7}{99}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=2
Tangohia ngā huānga poukapa x me y.
7x+8y=30,8x-5y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8\times 7x+8\times 8y=8\times 30,7\times 8x+7\left(-5\right)y=7\times 6
Kia ōrite ai a 7x me 8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
56x+64y=240,56x-35y=42
Whakarūnātia.
56x-56x+64y+35y=240-42
Me tango 56x-35y=42 mai i 56x+64y=240 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
64y+35y=240-42
Tāpiri 56x ki te -56x. Ka whakakore atu ngā kupu 56x me -56x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
99y=240-42
Tāpiri 64y ki te 35y.
99y=198
Tāpiri 240 ki te -42.
y=2
Whakawehea ngā taha e rua ki te 99.
8x-5\times 2=6
Whakaurua te 2 mō y ki 8x-5y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
8x-10=6
Whakareatia -5 ki te 2.
8x=16
Me tāpiri 10 ki ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 8.
x=2,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}