Whakaoti mō x, y
x=-7
y=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
7x+8y=15,9x+8y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x+8y=15
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=-8y+15
Me tango 8y mai i ngā taha e rua o te whārite.
x=\frac{1}{7}\left(-8y+15\right)
Whakawehea ngā taha e rua ki te 7.
x=-\frac{8}{7}y+\frac{15}{7}
Whakareatia \frac{1}{7} ki te -8y+15.
9\left(-\frac{8}{7}y+\frac{15}{7}\right)+8y=1
Whakakapia te \frac{-8y+15}{7} mō te x ki tērā atu whārite, 9x+8y=1.
-\frac{72}{7}y+\frac{135}{7}+8y=1
Whakareatia 9 ki te \frac{-8y+15}{7}.
-\frac{16}{7}y+\frac{135}{7}=1
Tāpiri -\frac{72y}{7} ki te 8y.
-\frac{16}{7}y=-\frac{128}{7}
Me tango \frac{135}{7} mai i ngā taha e rua o te whārite.
y=8
Whakawehea ngā taha e rua o te whārite ki te -\frac{16}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{8}{7}\times 8+\frac{15}{7}
Whakaurua te 8 mō y ki x=-\frac{8}{7}y+\frac{15}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-64+15}{7}
Whakareatia -\frac{8}{7} ki te 8.
x=-7
Tāpiri \frac{15}{7} ki te -\frac{64}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-7,y=8
Kua oti te pūnaha te whakatau.
7x+8y=15,9x+8y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&8\\9&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&8\\9&8\end{matrix}\right))\left(\begin{matrix}7&8\\9&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&8\\9&8\end{matrix}\right))\left(\begin{matrix}15\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&8\\9&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&8\\9&8\end{matrix}\right))\left(\begin{matrix}15\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&8\\9&8\end{matrix}\right))\left(\begin{matrix}15\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{7\times 8-8\times 9}&-\frac{8}{7\times 8-8\times 9}\\-\frac{9}{7\times 8-8\times 9}&\frac{7}{7\times 8-8\times 9}\end{matrix}\right)\left(\begin{matrix}15\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{9}{16}&-\frac{7}{16}\end{matrix}\right)\left(\begin{matrix}15\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 15+\frac{1}{2}\\\frac{9}{16}\times 15-\frac{7}{16}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\8\end{matrix}\right)
Mahia ngā tātaitanga.
x=-7,y=8
Tangohia ngā huānga poukapa x me y.
7x+8y=15,9x+8y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7x-9x+8y-8y=15-1
Me tango 9x+8y=1 mai i 7x+8y=15 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
7x-9x=15-1
Tāpiri 8y ki te -8y. Ka whakakore atu ngā kupu 8y me -8y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2x=15-1
Tāpiri 7x ki te -9x.
-2x=14
Tāpiri 15 ki te -1.
x=-7
Whakawehea ngā taha e rua ki te -2.
9\left(-7\right)+8y=1
Whakaurua te -7 mō x ki 9x+8y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-63+8y=1
Whakareatia 9 ki te -7.
8y=64
Me tāpiri 63 ki ngā taha e rua o te whārite.
y=8
Whakawehea ngā taha e rua ki te 8.
x=-7,y=8
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}