Whakaoti mō x, y
x=6
y=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+\frac{y}{2}=4
Whakaarohia te whārite tuarua. Me tāpiri te \frac{y}{2} ki ngā taha e rua.
2x+y=8
Whakareatia ngā taha e rua o te whārite ki te 2.
7x+6y=18,2x+y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x+6y=18
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=-6y+18
Me tango 6y mai i ngā taha e rua o te whārite.
x=\frac{1}{7}\left(-6y+18\right)
Whakawehea ngā taha e rua ki te 7.
x=-\frac{6}{7}y+\frac{18}{7}
Whakareatia \frac{1}{7} ki te -6y+18.
2\left(-\frac{6}{7}y+\frac{18}{7}\right)+y=8
Whakakapia te \frac{-6y+18}{7} mō te x ki tērā atu whārite, 2x+y=8.
-\frac{12}{7}y+\frac{36}{7}+y=8
Whakareatia 2 ki te \frac{-6y+18}{7}.
-\frac{5}{7}y+\frac{36}{7}=8
Tāpiri -\frac{12y}{7} ki te y.
-\frac{5}{7}y=\frac{20}{7}
Me tango \frac{36}{7} mai i ngā taha e rua o te whārite.
y=-4
Whakawehea ngā taha e rua o te whārite ki te -\frac{5}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{6}{7}\left(-4\right)+\frac{18}{7}
Whakaurua te -4 mō y ki x=-\frac{6}{7}y+\frac{18}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{24+18}{7}
Whakareatia -\frac{6}{7} ki te -4.
x=6
Tāpiri \frac{18}{7} ki te \frac{24}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=6,y=-4
Kua oti te pūnaha te whakatau.
x+\frac{y}{2}=4
Whakaarohia te whārite tuarua. Me tāpiri te \frac{y}{2} ki ngā taha e rua.
2x+y=8
Whakareatia ngā taha e rua o te whārite ki te 2.
7x+6y=18,2x+y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&6\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&6\\2&1\end{matrix}\right))\left(\begin{matrix}7&6\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&6\\2&1\end{matrix}\right))\left(\begin{matrix}18\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&6\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&6\\2&1\end{matrix}\right))\left(\begin{matrix}18\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&6\\2&1\end{matrix}\right))\left(\begin{matrix}18\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7-6\times 2}&-\frac{6}{7-6\times 2}\\-\frac{2}{7-6\times 2}&\frac{7}{7-6\times 2}\end{matrix}\right)\left(\begin{matrix}18\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{6}{5}\\\frac{2}{5}&-\frac{7}{5}\end{matrix}\right)\left(\begin{matrix}18\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 18+\frac{6}{5}\times 8\\\frac{2}{5}\times 18-\frac{7}{5}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=6,y=-4
Tangohia ngā huānga poukapa x me y.
x+\frac{y}{2}=4
Whakaarohia te whārite tuarua. Me tāpiri te \frac{y}{2} ki ngā taha e rua.
2x+y=8
Whakareatia ngā taha e rua o te whārite ki te 2.
7x+6y=18,2x+y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 7x+2\times 6y=2\times 18,7\times 2x+7y=7\times 8
Kia ōrite ai a 7x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
14x+12y=36,14x+7y=56
Whakarūnātia.
14x-14x+12y-7y=36-56
Me tango 14x+7y=56 mai i 14x+12y=36 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12y-7y=36-56
Tāpiri 14x ki te -14x. Ka whakakore atu ngā kupu 14x me -14x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=36-56
Tāpiri 12y ki te -7y.
5y=-20
Tāpiri 36 ki te -56.
y=-4
Whakawehea ngā taha e rua ki te 5.
2x-4=8
Whakaurua te -4 mō y ki 2x+y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=12
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=6
Whakawehea ngā taha e rua ki te 2.
x=6,y=-4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}