Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7x+5y=12,8x-2y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x+5y=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=-5y+12
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{7}\left(-5y+12\right)
Whakawehea ngā taha e rua ki te 7.
x=-\frac{5}{7}y+\frac{12}{7}
Whakareatia \frac{1}{7} ki te -5y+12.
8\left(-\frac{5}{7}y+\frac{12}{7}\right)-2y=7
Whakakapia te \frac{-5y+12}{7} mō te x ki tērā atu whārite, 8x-2y=7.
-\frac{40}{7}y+\frac{96}{7}-2y=7
Whakareatia 8 ki te \frac{-5y+12}{7}.
-\frac{54}{7}y+\frac{96}{7}=7
Tāpiri -\frac{40y}{7} ki te -2y.
-\frac{54}{7}y=-\frac{47}{7}
Me tango \frac{96}{7} mai i ngā taha e rua o te whārite.
y=\frac{47}{54}
Whakawehea ngā taha e rua o te whārite ki te -\frac{54}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{7}\times \frac{47}{54}+\frac{12}{7}
Whakaurua te \frac{47}{54} mō y ki x=-\frac{5}{7}y+\frac{12}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{235}{378}+\frac{12}{7}
Whakareatia -\frac{5}{7} ki te \frac{47}{54} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{59}{54}
Tāpiri \frac{12}{7} ki te -\frac{235}{378} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{59}{54},y=\frac{47}{54}
Kua oti te pūnaha te whakatau.
7x+5y=12,8x-2y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&5\\8&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&5\\8&-2\end{matrix}\right))\left(\begin{matrix}7&5\\8&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\8&-2\end{matrix}\right))\left(\begin{matrix}12\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&5\\8&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\8&-2\end{matrix}\right))\left(\begin{matrix}12\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\8&-2\end{matrix}\right))\left(\begin{matrix}12\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7\left(-2\right)-5\times 8}&-\frac{5}{7\left(-2\right)-5\times 8}\\-\frac{8}{7\left(-2\right)-5\times 8}&\frac{7}{7\left(-2\right)-5\times 8}\end{matrix}\right)\left(\begin{matrix}12\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{27}&\frac{5}{54}\\\frac{4}{27}&-\frac{7}{54}\end{matrix}\right)\left(\begin{matrix}12\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{27}\times 12+\frac{5}{54}\times 7\\\frac{4}{27}\times 12-\frac{7}{54}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{59}{54}\\\frac{47}{54}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{59}{54},y=\frac{47}{54}
Tangohia ngā huānga poukapa x me y.
7x+5y=12,8x-2y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8\times 7x+8\times 5y=8\times 12,7\times 8x+7\left(-2\right)y=7\times 7
Kia ōrite ai a 7x me 8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
56x+40y=96,56x-14y=49
Whakarūnātia.
56x-56x+40y+14y=96-49
Me tango 56x-14y=49 mai i 56x+40y=96 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
40y+14y=96-49
Tāpiri 56x ki te -56x. Ka whakakore atu ngā kupu 56x me -56x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
54y=96-49
Tāpiri 40y ki te 14y.
54y=47
Tāpiri 96 ki te -49.
y=\frac{47}{54}
Whakawehea ngā taha e rua ki te 54.
8x-2\times \frac{47}{54}=7
Whakaurua te \frac{47}{54} mō y ki 8x-2y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
8x-\frac{47}{27}=7
Whakareatia -2 ki te \frac{47}{54}.
8x=\frac{236}{27}
Me tāpiri \frac{47}{27} ki ngā taha e rua o te whārite.
x=\frac{59}{54}
Whakawehea ngā taha e rua ki te 8.
x=\frac{59}{54},y=\frac{47}{54}
Kua oti te pūnaha te whakatau.