Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7x+5y=-3,-9x+y=-11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x+5y=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=-5y-3
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{7}\left(-5y-3\right)
Whakawehea ngā taha e rua ki te 7.
x=-\frac{5}{7}y-\frac{3}{7}
Whakareatia \frac{1}{7} ki te -5y-3.
-9\left(-\frac{5}{7}y-\frac{3}{7}\right)+y=-11
Whakakapia te \frac{-5y-3}{7} mō te x ki tērā atu whārite, -9x+y=-11.
\frac{45}{7}y+\frac{27}{7}+y=-11
Whakareatia -9 ki te \frac{-5y-3}{7}.
\frac{52}{7}y+\frac{27}{7}=-11
Tāpiri \frac{45y}{7} ki te y.
\frac{52}{7}y=-\frac{104}{7}
Me tango \frac{27}{7} mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te \frac{52}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{7}\left(-2\right)-\frac{3}{7}
Whakaurua te -2 mō y ki x=-\frac{5}{7}y-\frac{3}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{10-3}{7}
Whakareatia -\frac{5}{7} ki te -2.
x=1
Tāpiri -\frac{3}{7} ki te \frac{10}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=-2
Kua oti te pūnaha te whakatau.
7x+5y=-3,-9x+y=-11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&5\\-9&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&5\\-9&1\end{matrix}\right))\left(\begin{matrix}7&5\\-9&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\-9&1\end{matrix}\right))\left(\begin{matrix}-3\\-11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&5\\-9&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\-9&1\end{matrix}\right))\left(\begin{matrix}-3\\-11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\-9&1\end{matrix}\right))\left(\begin{matrix}-3\\-11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7-5\left(-9\right)}&-\frac{5}{7-5\left(-9\right)}\\-\frac{-9}{7-5\left(-9\right)}&\frac{7}{7-5\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}-3\\-11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{52}&-\frac{5}{52}\\\frac{9}{52}&\frac{7}{52}\end{matrix}\right)\left(\begin{matrix}-3\\-11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{52}\left(-3\right)-\frac{5}{52}\left(-11\right)\\\frac{9}{52}\left(-3\right)+\frac{7}{52}\left(-11\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-2
Tangohia ngā huānga poukapa x me y.
7x+5y=-3,-9x+y=-11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-9\times 7x-9\times 5y=-9\left(-3\right),7\left(-9\right)x+7y=7\left(-11\right)
Kia ōrite ai a 7x me -9x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -9 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
-63x-45y=27,-63x+7y=-77
Whakarūnātia.
-63x+63x-45y-7y=27+77
Me tango -63x+7y=-77 mai i -63x-45y=27 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-45y-7y=27+77
Tāpiri -63x ki te 63x. Ka whakakore atu ngā kupu -63x me 63x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-52y=27+77
Tāpiri -45y ki te -7y.
-52y=104
Tāpiri 27 ki te 77.
y=-2
Whakawehea ngā taha e rua ki te -52.
-9x-2=-11
Whakaurua te -2 mō y ki -9x+y=-11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-9x=-9
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -9.
x=1,y=-2
Kua oti te pūnaha te whakatau.