Whakaoti mō x, y
x=4
y=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
7x+4y=52,4x-4y=-8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x+4y=52
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=-4y+52
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{7}\left(-4y+52\right)
Whakawehea ngā taha e rua ki te 7.
x=-\frac{4}{7}y+\frac{52}{7}
Whakareatia \frac{1}{7} ki te -4y+52.
4\left(-\frac{4}{7}y+\frac{52}{7}\right)-4y=-8
Whakakapia te \frac{-4y+52}{7} mō te x ki tērā atu whārite, 4x-4y=-8.
-\frac{16}{7}y+\frac{208}{7}-4y=-8
Whakareatia 4 ki te \frac{-4y+52}{7}.
-\frac{44}{7}y+\frac{208}{7}=-8
Tāpiri -\frac{16y}{7} ki te -4y.
-\frac{44}{7}y=-\frac{264}{7}
Me tango \frac{208}{7} mai i ngā taha e rua o te whārite.
y=6
Whakawehea ngā taha e rua o te whārite ki te -\frac{44}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{4}{7}\times 6+\frac{52}{7}
Whakaurua te 6 mō y ki x=-\frac{4}{7}y+\frac{52}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-24+52}{7}
Whakareatia -\frac{4}{7} ki te 6.
x=4
Tāpiri \frac{52}{7} ki te -\frac{24}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=4,y=6
Kua oti te pūnaha te whakatau.
7x+4y=52,4x-4y=-8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&4\\4&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}52\\-8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&4\\4&-4\end{matrix}\right))\left(\begin{matrix}7&4\\4&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&4\\4&-4\end{matrix}\right))\left(\begin{matrix}52\\-8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&4\\4&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&4\\4&-4\end{matrix}\right))\left(\begin{matrix}52\\-8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&4\\4&-4\end{matrix}\right))\left(\begin{matrix}52\\-8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7\left(-4\right)-4\times 4}&-\frac{4}{7\left(-4\right)-4\times 4}\\-\frac{4}{7\left(-4\right)-4\times 4}&\frac{7}{7\left(-4\right)-4\times 4}\end{matrix}\right)\left(\begin{matrix}52\\-8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{1}{11}\\\frac{1}{11}&-\frac{7}{44}\end{matrix}\right)\left(\begin{matrix}52\\-8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 52+\frac{1}{11}\left(-8\right)\\\frac{1}{11}\times 52-\frac{7}{44}\left(-8\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\6\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=6
Tangohia ngā huānga poukapa x me y.
7x+4y=52,4x-4y=-8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 7x+4\times 4y=4\times 52,7\times 4x+7\left(-4\right)y=7\left(-8\right)
Kia ōrite ai a 7x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
28x+16y=208,28x-28y=-56
Whakarūnātia.
28x-28x+16y+28y=208+56
Me tango 28x-28y=-56 mai i 28x+16y=208 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
16y+28y=208+56
Tāpiri 28x ki te -28x. Ka whakakore atu ngā kupu 28x me -28x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
44y=208+56
Tāpiri 16y ki te 28y.
44y=264
Tāpiri 208 ki te 56.
y=6
Whakawehea ngā taha e rua ki te 44.
4x-4\times 6=-8
Whakaurua te 6 mō y ki 4x-4y=-8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x-24=-8
Whakareatia -4 ki te 6.
4x=16
Me tāpiri 24 ki ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te 4.
x=4,y=6
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}