Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7x+3y=4,2x+4y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x+3y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=-3y+4
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{7}\left(-3y+4\right)
Whakawehea ngā taha e rua ki te 7.
x=-\frac{3}{7}y+\frac{4}{7}
Whakareatia \frac{1}{7} ki te -3y+4.
2\left(-\frac{3}{7}y+\frac{4}{7}\right)+4y=8
Whakakapia te \frac{-3y+4}{7} mō te x ki tērā atu whārite, 2x+4y=8.
-\frac{6}{7}y+\frac{8}{7}+4y=8
Whakareatia 2 ki te \frac{-3y+4}{7}.
\frac{22}{7}y+\frac{8}{7}=8
Tāpiri -\frac{6y}{7} ki te 4y.
\frac{22}{7}y=\frac{48}{7}
Me tango \frac{8}{7} mai i ngā taha e rua o te whārite.
y=\frac{24}{11}
Whakawehea ngā taha e rua o te whārite ki te \frac{22}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{7}\times \frac{24}{11}+\frac{4}{7}
Whakaurua te \frac{24}{11} mō y ki x=-\frac{3}{7}y+\frac{4}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{72}{77}+\frac{4}{7}
Whakareatia -\frac{3}{7} ki te \frac{24}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{4}{11}
Tāpiri \frac{4}{7} ki te -\frac{72}{77} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{4}{11},y=\frac{24}{11}
Kua oti te pūnaha te whakatau.
7x+3y=4,2x+4y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&3\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&3\\2&4\end{matrix}\right))\left(\begin{matrix}7&3\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\2&4\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&3\\2&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\2&4\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\2&4\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7\times 4-3\times 2}&-\frac{3}{7\times 4-3\times 2}\\-\frac{2}{7\times 4-3\times 2}&\frac{7}{7\times 4-3\times 2}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&-\frac{3}{22}\\-\frac{1}{11}&\frac{7}{22}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 4-\frac{3}{22}\times 8\\-\frac{1}{11}\times 4+\frac{7}{22}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{11}\\\frac{24}{11}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{4}{11},y=\frac{24}{11}
Tangohia ngā huānga poukapa x me y.
7x+3y=4,2x+4y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 7x+2\times 3y=2\times 4,7\times 2x+7\times 4y=7\times 8
Kia ōrite ai a 7x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
14x+6y=8,14x+28y=56
Whakarūnātia.
14x-14x+6y-28y=8-56
Me tango 14x+28y=56 mai i 14x+6y=8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y-28y=8-56
Tāpiri 14x ki te -14x. Ka whakakore atu ngā kupu 14x me -14x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-22y=8-56
Tāpiri 6y ki te -28y.
-22y=-48
Tāpiri 8 ki te -56.
y=\frac{24}{11}
Whakawehea ngā taha e rua ki te -22.
2x+4\times \frac{24}{11}=8
Whakaurua te \frac{24}{11} mō y ki 2x+4y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+\frac{96}{11}=8
Whakareatia 4 ki te \frac{24}{11}.
2x=-\frac{8}{11}
Me tango \frac{96}{11} mai i ngā taha e rua o te whārite.
x=-\frac{4}{11}
Whakawehea ngā taha e rua ki te 2.
x=-\frac{4}{11},y=\frac{24}{11}
Kua oti te pūnaha te whakatau.