Whakaoti mō w, z
z=1
w=2
Tohaina
Kua tāruatia ki te papatopenga
5w-2z=8
Whakaarohia te whārite tuarua. Tangohia te 2z mai i ngā taha e rua.
7w+2z=16,5w-2z=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7w+2z=16
Kōwhiria tētahi o ngā whārite ka whakaotia mō te w mā te wehe i te w i te taha mauī o te tohu ōrite.
7w=-2z+16
Me tango 2z mai i ngā taha e rua o te whārite.
w=\frac{1}{7}\left(-2z+16\right)
Whakawehea ngā taha e rua ki te 7.
w=-\frac{2}{7}z+\frac{16}{7}
Whakareatia \frac{1}{7} ki te -2z+16.
5\left(-\frac{2}{7}z+\frac{16}{7}\right)-2z=8
Whakakapia te \frac{-2z+16}{7} mō te w ki tērā atu whārite, 5w-2z=8.
-\frac{10}{7}z+\frac{80}{7}-2z=8
Whakareatia 5 ki te \frac{-2z+16}{7}.
-\frac{24}{7}z+\frac{80}{7}=8
Tāpiri -\frac{10z}{7} ki te -2z.
-\frac{24}{7}z=-\frac{24}{7}
Me tango \frac{80}{7} mai i ngā taha e rua o te whārite.
z=1
Whakawehea ngā taha e rua o te whārite ki te -\frac{24}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
w=\frac{-2+16}{7}
Whakaurua te 1 mō z ki w=-\frac{2}{7}z+\frac{16}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō w hāngai tonu.
w=2
Tāpiri \frac{16}{7} ki te -\frac{2}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
w=2,z=1
Kua oti te pūnaha te whakatau.
5w-2z=8
Whakaarohia te whārite tuarua. Tangohia te 2z mai i ngā taha e rua.
7w+2z=16,5w-2z=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&2\\5&-2\end{matrix}\right)\left(\begin{matrix}w\\z\end{matrix}\right)=\left(\begin{matrix}16\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&2\\5&-2\end{matrix}\right))\left(\begin{matrix}7&2\\5&-2\end{matrix}\right)\left(\begin{matrix}w\\z\end{matrix}\right)=inverse(\left(\begin{matrix}7&2\\5&-2\end{matrix}\right))\left(\begin{matrix}16\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&2\\5&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}w\\z\end{matrix}\right)=inverse(\left(\begin{matrix}7&2\\5&-2\end{matrix}\right))\left(\begin{matrix}16\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}w\\z\end{matrix}\right)=inverse(\left(\begin{matrix}7&2\\5&-2\end{matrix}\right))\left(\begin{matrix}16\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}w\\z\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7\left(-2\right)-2\times 5}&-\frac{2}{7\left(-2\right)-2\times 5}\\-\frac{5}{7\left(-2\right)-2\times 5}&\frac{7}{7\left(-2\right)-2\times 5}\end{matrix}\right)\left(\begin{matrix}16\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}w\\z\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&\frac{1}{12}\\\frac{5}{24}&-\frac{7}{24}\end{matrix}\right)\left(\begin{matrix}16\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}w\\z\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\times 16+\frac{1}{12}\times 8\\\frac{5}{24}\times 16-\frac{7}{24}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}w\\z\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Mahia ngā tātaitanga.
w=2,z=1
Tangohia ngā huānga poukapa w me z.
5w-2z=8
Whakaarohia te whārite tuarua. Tangohia te 2z mai i ngā taha e rua.
7w+2z=16,5w-2z=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 7w+5\times 2z=5\times 16,7\times 5w+7\left(-2\right)z=7\times 8
Kia ōrite ai a 7w me 5w, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
35w+10z=80,35w-14z=56
Whakarūnātia.
35w-35w+10z+14z=80-56
Me tango 35w-14z=56 mai i 35w+10z=80 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
10z+14z=80-56
Tāpiri 35w ki te -35w. Ka whakakore atu ngā kupu 35w me -35w, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
24z=80-56
Tāpiri 10z ki te 14z.
24z=24
Tāpiri 80 ki te -56.
z=1
Whakawehea ngā taha e rua ki te 24.
5w-2=8
Whakaurua te 1 mō z ki 5w-2z=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō w hāngai tonu.
5w=10
Me tāpiri 2 ki ngā taha e rua o te whārite.
w=2
Whakawehea ngā taha e rua ki te 5.
w=2,z=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}