Whakaoti mō x, y
x=\frac{5}{6}\approx 0.833333333
y = -\frac{23}{3} = -7\frac{2}{3} \approx -7.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
62x+y=44,34x-y=36
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
62x+y=44
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
62x=-y+44
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{62}\left(-y+44\right)
Whakawehea ngā taha e rua ki te 62.
x=-\frac{1}{62}y+\frac{22}{31}
Whakareatia \frac{1}{62} ki te -y+44.
34\left(-\frac{1}{62}y+\frac{22}{31}\right)-y=36
Whakakapia te -\frac{y}{62}+\frac{22}{31} mō te x ki tērā atu whārite, 34x-y=36.
-\frac{17}{31}y+\frac{748}{31}-y=36
Whakareatia 34 ki te -\frac{y}{62}+\frac{22}{31}.
-\frac{48}{31}y+\frac{748}{31}=36
Tāpiri -\frac{17y}{31} ki te -y.
-\frac{48}{31}y=\frac{368}{31}
Me tango \frac{748}{31} mai i ngā taha e rua o te whārite.
y=-\frac{23}{3}
Whakawehea ngā taha e rua o te whārite ki te -\frac{48}{31}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{62}\left(-\frac{23}{3}\right)+\frac{22}{31}
Whakaurua te -\frac{23}{3} mō y ki x=-\frac{1}{62}y+\frac{22}{31}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{23}{186}+\frac{22}{31}
Whakareatia -\frac{1}{62} ki te -\frac{23}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{5}{6}
Tāpiri \frac{22}{31} ki te \frac{23}{186} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{5}{6},y=-\frac{23}{3}
Kua oti te pūnaha te whakatau.
62x+y=44,34x-y=36
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}62&1\\34&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}44\\36\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}62&1\\34&-1\end{matrix}\right))\left(\begin{matrix}62&1\\34&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}62&1\\34&-1\end{matrix}\right))\left(\begin{matrix}44\\36\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}62&1\\34&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}62&1\\34&-1\end{matrix}\right))\left(\begin{matrix}44\\36\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}62&1\\34&-1\end{matrix}\right))\left(\begin{matrix}44\\36\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{62\left(-1\right)-34}&-\frac{1}{62\left(-1\right)-34}\\-\frac{34}{62\left(-1\right)-34}&\frac{62}{62\left(-1\right)-34}\end{matrix}\right)\left(\begin{matrix}44\\36\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{96}&\frac{1}{96}\\\frac{17}{48}&-\frac{31}{48}\end{matrix}\right)\left(\begin{matrix}44\\36\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{96}\times 44+\frac{1}{96}\times 36\\\frac{17}{48}\times 44-\frac{31}{48}\times 36\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\\-\frac{23}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{5}{6},y=-\frac{23}{3}
Tangohia ngā huānga poukapa x me y.
62x+y=44,34x-y=36
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
34\times 62x+34y=34\times 44,62\times 34x+62\left(-1\right)y=62\times 36
Kia ōrite ai a 62x me 34x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 34 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 62.
2108x+34y=1496,2108x-62y=2232
Whakarūnātia.
2108x-2108x+34y+62y=1496-2232
Me tango 2108x-62y=2232 mai i 2108x+34y=1496 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
34y+62y=1496-2232
Tāpiri 2108x ki te -2108x. Ka whakakore atu ngā kupu 2108x me -2108x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
96y=1496-2232
Tāpiri 34y ki te 62y.
96y=-736
Tāpiri 1496 ki te -2232.
y=-\frac{23}{3}
Whakawehea ngā taha e rua ki te 96.
34x-\left(-\frac{23}{3}\right)=36
Whakaurua te -\frac{23}{3} mō y ki 34x-y=36. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
34x=\frac{85}{3}
Me tango \frac{23}{3} mai i ngā taha e rua o te whārite.
x=\frac{5}{6}
Whakawehea ngā taha e rua ki te 34.
x=\frac{5}{6},y=-\frac{23}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}