Whakaoti mō y, x
x = \frac{273}{2} = 136\frac{1}{2} = 136.5
y = -\frac{173}{2} = -86\frac{1}{2} = -86.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
6y+4x=27,y+x=50
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6y+4x=27
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
6y=-4x+27
Me tango 4x mai i ngā taha e rua o te whārite.
y=\frac{1}{6}\left(-4x+27\right)
Whakawehea ngā taha e rua ki te 6.
y=-\frac{2}{3}x+\frac{9}{2}
Whakareatia \frac{1}{6} ki te -4x+27.
-\frac{2}{3}x+\frac{9}{2}+x=50
Whakakapia te -\frac{2x}{3}+\frac{9}{2} mō te y ki tērā atu whārite, y+x=50.
\frac{1}{3}x+\frac{9}{2}=50
Tāpiri -\frac{2x}{3} ki te x.
\frac{1}{3}x=\frac{91}{2}
Me tango \frac{9}{2} mai i ngā taha e rua o te whārite.
x=\frac{273}{2}
Me whakarea ngā taha e rua ki te 3.
y=-\frac{2}{3}\times \frac{273}{2}+\frac{9}{2}
Whakaurua te \frac{273}{2} mō x ki y=-\frac{2}{3}x+\frac{9}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-91+\frac{9}{2}
Whakareatia -\frac{2}{3} ki te \frac{273}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=-\frac{173}{2}
Tāpiri \frac{9}{2} ki te -91.
y=-\frac{173}{2},x=\frac{273}{2}
Kua oti te pūnaha te whakatau.
6y+4x=27,y+x=50
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&4\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}27\\50\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&4\\1&1\end{matrix}\right))\left(\begin{matrix}6&4\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}6&4\\1&1\end{matrix}\right))\left(\begin{matrix}27\\50\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&4\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}6&4\\1&1\end{matrix}\right))\left(\begin{matrix}27\\50\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}6&4\\1&1\end{matrix}\right))\left(\begin{matrix}27\\50\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6-4}&-\frac{4}{6-4}\\-\frac{1}{6-4}&\frac{6}{6-4}\end{matrix}\right)\left(\begin{matrix}27\\50\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-2\\-\frac{1}{2}&3\end{matrix}\right)\left(\begin{matrix}27\\50\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 27-2\times 50\\-\frac{1}{2}\times 27+3\times 50\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{173}{2}\\\frac{273}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
y=-\frac{173}{2},x=\frac{273}{2}
Tangohia ngā huānga poukapa y me x.
6y+4x=27,y+x=50
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6y+4x=27,6y+6x=6\times 50
Kia ōrite ai a 6y me y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
6y+4x=27,6y+6x=300
Whakarūnātia.
6y-6y+4x-6x=27-300
Me tango 6y+6x=300 mai i 6y+4x=27 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4x-6x=27-300
Tāpiri 6y ki te -6y. Ka whakakore atu ngā kupu 6y me -6y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2x=27-300
Tāpiri 4x ki te -6x.
-2x=-273
Tāpiri 27 ki te -300.
x=\frac{273}{2}
Whakawehea ngā taha e rua ki te -2.
y+\frac{273}{2}=50
Whakaurua te \frac{273}{2} mō x ki y+x=50. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-\frac{173}{2}
Me tango \frac{273}{2} mai i ngā taha e rua o te whārite.
y=-\frac{173}{2},x=\frac{273}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}