Whakaoti mō x, y
x = -\frac{123}{23} = -5\frac{8}{23} \approx -5.347826087
y=\frac{18}{23}\approx 0.782608696
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x-5y=-36,-7x+2y=39
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x-5y=-36
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=5y-36
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{6}\left(5y-36\right)
Whakawehea ngā taha e rua ki te 6.
x=\frac{5}{6}y-6
Whakareatia \frac{1}{6} ki te 5y-36.
-7\left(\frac{5}{6}y-6\right)+2y=39
Whakakapia te \frac{5y}{6}-6 mō te x ki tērā atu whārite, -7x+2y=39.
-\frac{35}{6}y+42+2y=39
Whakareatia -7 ki te \frac{5y}{6}-6.
-\frac{23}{6}y+42=39
Tāpiri -\frac{35y}{6} ki te 2y.
-\frac{23}{6}y=-3
Me tango 42 mai i ngā taha e rua o te whārite.
y=\frac{18}{23}
Whakawehea ngā taha e rua o te whārite ki te -\frac{23}{6}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{5}{6}\times \frac{18}{23}-6
Whakaurua te \frac{18}{23} mō y ki x=\frac{5}{6}y-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{15}{23}-6
Whakareatia \frac{5}{6} ki te \frac{18}{23} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{123}{23}
Tāpiri -6 ki te \frac{15}{23}.
x=-\frac{123}{23},y=\frac{18}{23}
Kua oti te pūnaha te whakatau.
6x-5y=-36,-7x+2y=39
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&-5\\-7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-36\\39\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&-5\\-7&2\end{matrix}\right))\left(\begin{matrix}6&-5\\-7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\-7&2\end{matrix}\right))\left(\begin{matrix}-36\\39\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&-5\\-7&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\-7&2\end{matrix}\right))\left(\begin{matrix}-36\\39\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\-7&2\end{matrix}\right))\left(\begin{matrix}-36\\39\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{6\times 2-\left(-5\left(-7\right)\right)}&-\frac{-5}{6\times 2-\left(-5\left(-7\right)\right)}\\-\frac{-7}{6\times 2-\left(-5\left(-7\right)\right)}&\frac{6}{6\times 2-\left(-5\left(-7\right)\right)}\end{matrix}\right)\left(\begin{matrix}-36\\39\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{23}&-\frac{5}{23}\\-\frac{7}{23}&-\frac{6}{23}\end{matrix}\right)\left(\begin{matrix}-36\\39\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{23}\left(-36\right)-\frac{5}{23}\times 39\\-\frac{7}{23}\left(-36\right)-\frac{6}{23}\times 39\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{123}{23}\\\frac{18}{23}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{123}{23},y=\frac{18}{23}
Tangohia ngā huānga poukapa x me y.
6x-5y=-36,-7x+2y=39
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-7\times 6x-7\left(-5\right)y=-7\left(-36\right),6\left(-7\right)x+6\times 2y=6\times 39
Kia ōrite ai a 6x me -7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
-42x+35y=252,-42x+12y=234
Whakarūnātia.
-42x+42x+35y-12y=252-234
Me tango -42x+12y=234 mai i -42x+35y=252 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
35y-12y=252-234
Tāpiri -42x ki te 42x. Ka whakakore atu ngā kupu -42x me 42x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
23y=252-234
Tāpiri 35y ki te -12y.
23y=18
Tāpiri 252 ki te -234.
y=\frac{18}{23}
Whakawehea ngā taha e rua ki te 23.
-7x+2\times \frac{18}{23}=39
Whakaurua te \frac{18}{23} mō y ki -7x+2y=39. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-7x+\frac{36}{23}=39
Whakareatia 2 ki te \frac{18}{23}.
-7x=\frac{861}{23}
Me tango \frac{36}{23} mai i ngā taha e rua o te whārite.
x=-\frac{123}{23}
Whakawehea ngā taha e rua ki te -7.
x=-\frac{123}{23},y=\frac{18}{23}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}