Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-11 ab=6\times 5=30
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 6x^{2}+ax+bx+5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-30 -2,-15 -3,-10 -5,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 30.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
Tātaihia te tapeke mō ia takirua.
a=-6 b=-5
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(6x^{2}-6x\right)+\left(-5x+5\right)
Tuhia anō te 6x^{2}-11x+5 hei \left(6x^{2}-6x\right)+\left(-5x+5\right).
6x\left(x-1\right)-5\left(x-1\right)
Tauwehea te 6x i te tuatahi me te -5 i te rōpū tuarua.
\left(x-1\right)\left(6x-5\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
6x^{2}-11x+5=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 6\times 5}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 6\times 5}}{2\times 6}
Pūrua -11.
x=\frac{-\left(-11\right)±\sqrt{121-24\times 5}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-11\right)±\sqrt{121-120}}{2\times 6}
Whakareatia -24 ki te 5.
x=\frac{-\left(-11\right)±\sqrt{1}}{2\times 6}
Tāpiri 121 ki te -120.
x=\frac{-\left(-11\right)±1}{2\times 6}
Tuhia te pūtakerua o te 1.
x=\frac{11±1}{2\times 6}
Ko te tauaro o -11 ko 11.
x=\frac{11±1}{12}
Whakareatia 2 ki te 6.
x=\frac{12}{12}
Nā, me whakaoti te whārite x=\frac{11±1}{12} ina he tāpiri te ±. Tāpiri 11 ki te 1.
x=1
Whakawehe 12 ki te 12.
x=\frac{10}{12}
Nā, me whakaoti te whārite x=\frac{11±1}{12} ina he tango te ±. Tango 1 mai i 11.
x=\frac{5}{6}
Whakahekea te hautanga \frac{10}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
6x^{2}-11x+5=6\left(x-1\right)\left(x-\frac{5}{6}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1 mō te x_{1} me te \frac{5}{6} mō te x_{2}.
6x^{2}-11x+5=6\left(x-1\right)\times \frac{6x-5}{6}
Tango \frac{5}{6} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}-11x+5=\left(x-1\right)\left(6x-5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 6 me te 6.