Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x+4y=5
Whakaarohia te whārite tuatahi. Me tāpiri te 4y ki ngā taha e rua.
8y-6x=-2
Whakaarohia te whārite tuarua. Tangohia te 6x mai i ngā taha e rua.
6x+4y=5,-6x+8y=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x+4y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=-4y+5
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{6}\left(-4y+5\right)
Whakawehea ngā taha e rua ki te 6.
x=-\frac{2}{3}y+\frac{5}{6}
Whakareatia \frac{1}{6} ki te -4y+5.
-6\left(-\frac{2}{3}y+\frac{5}{6}\right)+8y=-2
Whakakapia te -\frac{2y}{3}+\frac{5}{6} mō te x ki tērā atu whārite, -6x+8y=-2.
4y-5+8y=-2
Whakareatia -6 ki te -\frac{2y}{3}+\frac{5}{6}.
12y-5=-2
Tāpiri 4y ki te 8y.
12y=3
Me tāpiri 5 ki ngā taha e rua o te whārite.
y=\frac{1}{4}
Whakawehea ngā taha e rua ki te 12.
x=-\frac{2}{3}\times \frac{1}{4}+\frac{5}{6}
Whakaurua te \frac{1}{4} mō y ki x=-\frac{2}{3}y+\frac{5}{6}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-1+5}{6}
Whakareatia -\frac{2}{3} ki te \frac{1}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{2}{3}
Tāpiri \frac{5}{6} ki te -\frac{1}{6} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{2}{3},y=\frac{1}{4}
Kua oti te pūnaha te whakatau.
6x+4y=5
Whakaarohia te whārite tuatahi. Me tāpiri te 4y ki ngā taha e rua.
8y-6x=-2
Whakaarohia te whārite tuarua. Tangohia te 6x mai i ngā taha e rua.
6x+4y=5,-6x+8y=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&4\\-6&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&4\\-6&8\end{matrix}\right))\left(\begin{matrix}6&4\\-6&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&4\\-6&8\end{matrix}\right))\left(\begin{matrix}5\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&4\\-6&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&4\\-6&8\end{matrix}\right))\left(\begin{matrix}5\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&4\\-6&8\end{matrix}\right))\left(\begin{matrix}5\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{6\times 8-4\left(-6\right)}&-\frac{4}{6\times 8-4\left(-6\right)}\\-\frac{-6}{6\times 8-4\left(-6\right)}&\frac{6}{6\times 8-4\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}5\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&-\frac{1}{18}\\\frac{1}{12}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}5\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\times 5-\frac{1}{18}\left(-2\right)\\\frac{1}{12}\times 5+\frac{1}{12}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\\\frac{1}{4}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{2}{3},y=\frac{1}{4}
Tangohia ngā huānga poukapa x me y.
6x+4y=5
Whakaarohia te whārite tuatahi. Me tāpiri te 4y ki ngā taha e rua.
8y-6x=-2
Whakaarohia te whārite tuarua. Tangohia te 6x mai i ngā taha e rua.
6x+4y=5,-6x+8y=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-6\times 6x-6\times 4y=-6\times 5,6\left(-6\right)x+6\times 8y=6\left(-2\right)
Kia ōrite ai a 6x me -6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
-36x-24y=-30,-36x+48y=-12
Whakarūnātia.
-36x+36x-24y-48y=-30+12
Me tango -36x+48y=-12 mai i -36x-24y=-30 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-24y-48y=-30+12
Tāpiri -36x ki te 36x. Ka whakakore atu ngā kupu -36x me 36x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-72y=-30+12
Tāpiri -24y ki te -48y.
-72y=-18
Tāpiri -30 ki te 12.
y=\frac{1}{4}
Whakawehea ngā taha e rua ki te -72.
-6x+8\times \frac{1}{4}=-2
Whakaurua te \frac{1}{4} mō y ki -6x+8y=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-6x+2=-2
Whakareatia 8 ki te \frac{1}{4}.
-6x=-4
Me tango 2 mai i ngā taha e rua o te whārite.
x=\frac{2}{3}
Whakawehea ngā taha e rua ki te -6.
x=\frac{2}{3},y=\frac{1}{4}
Kua oti te pūnaha te whakatau.