Whakaoti mō x, y
x=4
y=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x+7y=-4,6x+4y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x+7y=-4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=-7y-4
Me tango 7y mai i ngā taha e rua o te whārite.
x=\frac{1}{6}\left(-7y-4\right)
Whakawehea ngā taha e rua ki te 6.
x=-\frac{7}{6}y-\frac{2}{3}
Whakareatia \frac{1}{6} ki te -7y-4.
6\left(-\frac{7}{6}y-\frac{2}{3}\right)+4y=8
Whakakapia te -\frac{7y}{6}-\frac{2}{3} mō te x ki tērā atu whārite, 6x+4y=8.
-7y-4+4y=8
Whakareatia 6 ki te -\frac{7y}{6}-\frac{2}{3}.
-3y-4=8
Tāpiri -7y ki te 4y.
-3y=12
Me tāpiri 4 ki ngā taha e rua o te whārite.
y=-4
Whakawehea ngā taha e rua ki te -3.
x=-\frac{7}{6}\left(-4\right)-\frac{2}{3}
Whakaurua te -4 mō y ki x=-\frac{7}{6}y-\frac{2}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{14-2}{3}
Whakareatia -\frac{7}{6} ki te -4.
x=4
Tāpiri -\frac{2}{3} ki te \frac{14}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=4,y=-4
Kua oti te pūnaha te whakatau.
6x+7y=-4,6x+4y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&7\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&7\\6&4\end{matrix}\right))\left(\begin{matrix}6&7\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&7\\6&4\end{matrix}\right))\left(\begin{matrix}-4\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&7\\6&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&7\\6&4\end{matrix}\right))\left(\begin{matrix}-4\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&7\\6&4\end{matrix}\right))\left(\begin{matrix}-4\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{6\times 4-7\times 6}&-\frac{7}{6\times 4-7\times 6}\\-\frac{6}{6\times 4-7\times 6}&\frac{6}{6\times 4-7\times 6}\end{matrix}\right)\left(\begin{matrix}-4\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{9}&\frac{7}{18}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-4\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{9}\left(-4\right)+\frac{7}{18}\times 8\\\frac{1}{3}\left(-4\right)-\frac{1}{3}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=-4
Tangohia ngā huānga poukapa x me y.
6x+7y=-4,6x+4y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6x-6x+7y-4y=-4-8
Me tango 6x+4y=8 mai i 6x+7y=-4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
7y-4y=-4-8
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y=-4-8
Tāpiri 7y ki te -4y.
3y=-12
Tāpiri -4 ki te -8.
y=-4
Whakawehea ngā taha e rua ki te 3.
6x+4\left(-4\right)=8
Whakaurua te -4 mō y ki 6x+4y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x-16=8
Whakareatia 4 ki te -4.
6x=24
Me tāpiri 16 ki ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te 6.
x=4,y=-4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}