Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x+5y=27,2x+y=13
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x+5y=27
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=-5y+27
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{6}\left(-5y+27\right)
Whakawehea ngā taha e rua ki te 6.
x=-\frac{5}{6}y+\frac{9}{2}
Whakareatia \frac{1}{6} ki te -5y+27.
2\left(-\frac{5}{6}y+\frac{9}{2}\right)+y=13
Whakakapia te -\frac{5y}{6}+\frac{9}{2} mō te x ki tērā atu whārite, 2x+y=13.
-\frac{5}{3}y+9+y=13
Whakareatia 2 ki te -\frac{5y}{6}+\frac{9}{2}.
-\frac{2}{3}y+9=13
Tāpiri -\frac{5y}{3} ki te y.
-\frac{2}{3}y=4
Me tango 9 mai i ngā taha e rua o te whārite.
y=-6
Whakawehea ngā taha e rua o te whārite ki te -\frac{2}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{6}\left(-6\right)+\frac{9}{2}
Whakaurua te -6 mō y ki x=-\frac{5}{6}y+\frac{9}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=5+\frac{9}{2}
Whakareatia -\frac{5}{6} ki te -6.
x=\frac{19}{2}
Tāpiri \frac{9}{2} ki te 5.
x=\frac{19}{2},y=-6
Kua oti te pūnaha te whakatau.
6x+5y=27,2x+y=13
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&5\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\13\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&5\\2&1\end{matrix}\right))\left(\begin{matrix}6&5\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\2&1\end{matrix}\right))\left(\begin{matrix}27\\13\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&5\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\2&1\end{matrix}\right))\left(\begin{matrix}27\\13\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\2&1\end{matrix}\right))\left(\begin{matrix}27\\13\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6-5\times 2}&-\frac{5}{6-5\times 2}\\-\frac{2}{6-5\times 2}&\frac{6}{6-5\times 2}\end{matrix}\right)\left(\begin{matrix}27\\13\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{5}{4}\\\frac{1}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}27\\13\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 27+\frac{5}{4}\times 13\\\frac{1}{2}\times 27-\frac{3}{2}\times 13\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19}{2}\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{19}{2},y=-6
Tangohia ngā huānga poukapa x me y.
6x+5y=27,2x+y=13
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 6x+2\times 5y=2\times 27,6\times 2x+6y=6\times 13
Kia ōrite ai a 6x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
12x+10y=54,12x+6y=78
Whakarūnātia.
12x-12x+10y-6y=54-78
Me tango 12x+6y=78 mai i 12x+10y=54 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
10y-6y=54-78
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
4y=54-78
Tāpiri 10y ki te -6y.
4y=-24
Tāpiri 54 ki te -78.
y=-6
Whakawehea ngā taha e rua ki te 4.
2x-6=13
Whakaurua te -6 mō y ki 2x+y=13. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=19
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=\frac{19}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{19}{2},y=-6
Kua oti te pūnaha te whakatau.