Whakaoti mō x, y
x=3
y=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x+3y=9,x-4y=15
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x+3y=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=-3y+9
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{6}\left(-3y+9\right)
Whakawehea ngā taha e rua ki te 6.
x=-\frac{1}{2}y+\frac{3}{2}
Whakareatia \frac{1}{6} ki te -3y+9.
-\frac{1}{2}y+\frac{3}{2}-4y=15
Whakakapia te \frac{-y+3}{2} mō te x ki tērā atu whārite, x-4y=15.
-\frac{9}{2}y+\frac{3}{2}=15
Tāpiri -\frac{y}{2} ki te -4y.
-\frac{9}{2}y=\frac{27}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
y=-3
Whakawehea ngā taha e rua o te whārite ki te -\frac{9}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{2}\left(-3\right)+\frac{3}{2}
Whakaurua te -3 mō y ki x=-\frac{1}{2}y+\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{3+3}{2}
Whakareatia -\frac{1}{2} ki te -3.
x=3
Tāpiri \frac{3}{2} ki te \frac{3}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=-3
Kua oti te pūnaha te whakatau.
6x+3y=9,x-4y=15
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&3\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\15\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&3\\1&-4\end{matrix}\right))\left(\begin{matrix}6&3\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\1&-4\end{matrix}\right))\left(\begin{matrix}9\\15\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&3\\1&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\1&-4\end{matrix}\right))\left(\begin{matrix}9\\15\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\1&-4\end{matrix}\right))\left(\begin{matrix}9\\15\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{6\left(-4\right)-3}&-\frac{3}{6\left(-4\right)-3}\\-\frac{1}{6\left(-4\right)-3}&\frac{6}{6\left(-4\right)-3}\end{matrix}\right)\left(\begin{matrix}9\\15\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{27}&\frac{1}{9}\\\frac{1}{27}&-\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}9\\15\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{27}\times 9+\frac{1}{9}\times 15\\\frac{1}{27}\times 9-\frac{2}{9}\times 15\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=-3
Tangohia ngā huānga poukapa x me y.
6x+3y=9,x-4y=15
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6x+3y=9,6x+6\left(-4\right)y=6\times 15
Kia ōrite ai a 6x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
6x+3y=9,6x-24y=90
Whakarūnātia.
6x-6x+3y+24y=9-90
Me tango 6x-24y=90 mai i 6x+3y=9 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y+24y=9-90
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
27y=9-90
Tāpiri 3y ki te 24y.
27y=-81
Tāpiri 9 ki te -90.
y=-3
Whakawehea ngā taha e rua ki te 27.
x-4\left(-3\right)=15
Whakaurua te -3 mō y ki x-4y=15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+12=15
Whakareatia -4 ki te -3.
x=3
Me tango 12 mai i ngā taha e rua o te whārite.
x=3,y=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}