Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x+3y=25.95,4x+6y=26.7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x+3y=25.95
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=-3y+25.95
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{6}\left(-3y+25.95\right)
Whakawehea ngā taha e rua ki te 6.
x=-\frac{1}{2}y+\frac{173}{40}
Whakareatia \frac{1}{6} ki te -3y+25.95.
4\left(-\frac{1}{2}y+\frac{173}{40}\right)+6y=26.7
Whakakapia te -\frac{y}{2}+\frac{173}{40} mō te x ki tērā atu whārite, 4x+6y=26.7.
-2y+\frac{173}{10}+6y=26.7
Whakareatia 4 ki te -\frac{y}{2}+\frac{173}{40}.
4y+\frac{173}{10}=26.7
Tāpiri -2y ki te 6y.
4y=\frac{47}{5}
Me tango \frac{173}{10} mai i ngā taha e rua o te whārite.
y=\frac{47}{20}
Whakawehea ngā taha e rua ki te 4.
x=-\frac{1}{2}\times \frac{47}{20}+\frac{173}{40}
Whakaurua te \frac{47}{20} mō y ki x=-\frac{1}{2}y+\frac{173}{40}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-47+173}{40}
Whakareatia -\frac{1}{2} ki te \frac{47}{20} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{63}{20}
Tāpiri \frac{173}{40} ki te -\frac{47}{40} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{63}{20},y=\frac{47}{20}
Kua oti te pūnaha te whakatau.
6x+3y=25.95,4x+6y=26.7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&3\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25.95\\26.7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&3\\4&6\end{matrix}\right))\left(\begin{matrix}6&3\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\4&6\end{matrix}\right))\left(\begin{matrix}25.95\\26.7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&3\\4&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\4&6\end{matrix}\right))\left(\begin{matrix}25.95\\26.7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\4&6\end{matrix}\right))\left(\begin{matrix}25.95\\26.7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{6\times 6-3\times 4}&-\frac{3}{6\times 6-3\times 4}\\-\frac{4}{6\times 6-3\times 4}&\frac{6}{6\times 6-3\times 4}\end{matrix}\right)\left(\begin{matrix}25.95\\26.7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{8}\\-\frac{1}{6}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}25.95\\26.7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 25.95-\frac{1}{8}\times 26.7\\-\frac{1}{6}\times 25.95+\frac{1}{4}\times 26.7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{63}{20}\\\frac{47}{20}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{63}{20},y=\frac{47}{20}
Tangohia ngā huānga poukapa x me y.
6x+3y=25.95,4x+6y=26.7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 6x+4\times 3y=4\times 25.95,6\times 4x+6\times 6y=6\times 26.7
Kia ōrite ai a 6x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
24x+12y=103.8,24x+36y=160.2
Whakarūnātia.
24x-24x+12y-36y=\frac{519-801}{5}
Me tango 24x+36y=160.2 mai i 24x+12y=103.8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12y-36y=\frac{519-801}{5}
Tāpiri 24x ki te -24x. Ka whakakore atu ngā kupu 24x me -24x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-24y=\frac{519-801}{5}
Tāpiri 12y ki te -36y.
-24y=-56.4
Tāpiri 103.8 ki te -160.2 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{47}{20}
Whakawehea ngā taha e rua ki te -24.
4x+6\times \frac{47}{20}=26.7
Whakaurua te \frac{47}{20} mō y ki 4x+6y=26.7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+\frac{141}{10}=26.7
Whakareatia 6 ki te \frac{47}{20}.
4x=\frac{63}{5}
Me tango \frac{141}{10} mai i ngā taha e rua o te whārite.
x=\frac{63}{20}
Whakawehea ngā taha e rua ki te 4.
x=\frac{63}{20},y=\frac{47}{20}
Kua oti te pūnaha te whakatau.