Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x+3y=24,7x+6y=33
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x+3y=24
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=-3y+24
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{6}\left(-3y+24\right)
Whakawehea ngā taha e rua ki te 6.
x=-\frac{1}{2}y+4
Whakareatia \frac{1}{6} ki te -3y+24.
7\left(-\frac{1}{2}y+4\right)+6y=33
Whakakapia te -\frac{y}{2}+4 mō te x ki tērā atu whārite, 7x+6y=33.
-\frac{7}{2}y+28+6y=33
Whakareatia 7 ki te -\frac{y}{2}+4.
\frac{5}{2}y+28=33
Tāpiri -\frac{7y}{2} ki te 6y.
\frac{5}{2}y=5
Me tango 28 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{2}\times 2+4
Whakaurua te 2 mō y ki x=-\frac{1}{2}y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-1+4
Whakareatia -\frac{1}{2} ki te 2.
x=3
Tāpiri 4 ki te -1.
x=3,y=2
Kua oti te pūnaha te whakatau.
6x+3y=24,7x+6y=33
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&3\\7&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\33\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&3\\7&6\end{matrix}\right))\left(\begin{matrix}6&3\\7&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\7&6\end{matrix}\right))\left(\begin{matrix}24\\33\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&3\\7&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\7&6\end{matrix}\right))\left(\begin{matrix}24\\33\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\7&6\end{matrix}\right))\left(\begin{matrix}24\\33\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{6\times 6-3\times 7}&-\frac{3}{6\times 6-3\times 7}\\-\frac{7}{6\times 6-3\times 7}&\frac{6}{6\times 6-3\times 7}\end{matrix}\right)\left(\begin{matrix}24\\33\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\-\frac{7}{15}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}24\\33\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 24-\frac{1}{5}\times 33\\-\frac{7}{15}\times 24+\frac{2}{5}\times 33\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=2
Tangohia ngā huānga poukapa x me y.
6x+3y=24,7x+6y=33
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\times 6x+7\times 3y=7\times 24,6\times 7x+6\times 6y=6\times 33
Kia ōrite ai a 6x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
42x+21y=168,42x+36y=198
Whakarūnātia.
42x-42x+21y-36y=168-198
Me tango 42x+36y=198 mai i 42x+21y=168 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
21y-36y=168-198
Tāpiri 42x ki te -42x. Ka whakakore atu ngā kupu 42x me -42x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-15y=168-198
Tāpiri 21y ki te -36y.
-15y=-30
Tāpiri 168 ki te -198.
y=2
Whakawehea ngā taha e rua ki te -15.
7x+6\times 2=33
Whakaurua te 2 mō y ki 7x+6y=33. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x+12=33
Whakareatia 6 ki te 2.
7x=21
Me tango 12 mai i ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 7.
x=3,y=2
Kua oti te pūnaha te whakatau.