Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x+2y=-6,3x-y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x+2y=-6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=-2y-6
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{6}\left(-2y-6\right)
Whakawehea ngā taha e rua ki te 6.
x=-\frac{1}{3}y-1
Whakareatia \frac{1}{6} ki te -2y-6.
3\left(-\frac{1}{3}y-1\right)-y=9
Whakakapia te -\frac{y}{3}-1 mō te x ki tērā atu whārite, 3x-y=9.
-y-3-y=9
Whakareatia 3 ki te -\frac{y}{3}-1.
-2y-3=9
Tāpiri -y ki te -y.
-2y=12
Me tāpiri 3 ki ngā taha e rua o te whārite.
y=-6
Whakawehea ngā taha e rua ki te -2.
x=-\frac{1}{3}\left(-6\right)-1
Whakaurua te -6 mō y ki x=-\frac{1}{3}y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2-1
Whakareatia -\frac{1}{3} ki te -6.
x=1
Tāpiri -1 ki te 2.
x=1,y=-6
Kua oti te pūnaha te whakatau.
6x+2y=-6,3x-y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&2\\3&-1\end{matrix}\right))\left(\begin{matrix}6&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&-1\end{matrix}\right))\left(\begin{matrix}-6\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&2\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&-1\end{matrix}\right))\left(\begin{matrix}-6\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&-1\end{matrix}\right))\left(\begin{matrix}-6\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6\left(-1\right)-2\times 3}&-\frac{2}{6\left(-1\right)-2\times 3}\\-\frac{3}{6\left(-1\right)-2\times 3}&\frac{6}{6\left(-1\right)-2\times 3}\end{matrix}\right)\left(\begin{matrix}-6\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&\frac{1}{6}\\\frac{1}{4}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-6\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\left(-6\right)+\frac{1}{6}\times 9\\\frac{1}{4}\left(-6\right)-\frac{1}{2}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-6
Tangohia ngā huānga poukapa x me y.
6x+2y=-6,3x-y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 6x+3\times 2y=3\left(-6\right),6\times 3x+6\left(-1\right)y=6\times 9
Kia ōrite ai a 6x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
18x+6y=-18,18x-6y=54
Whakarūnātia.
18x-18x+6y+6y=-18-54
Me tango 18x-6y=54 mai i 18x+6y=-18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y+6y=-18-54
Tāpiri 18x ki te -18x. Ka whakakore atu ngā kupu 18x me -18x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
12y=-18-54
Tāpiri 6y ki te 6y.
12y=-72
Tāpiri -18 ki te -54.
y=-6
Whakawehea ngā taha e rua ki te 12.
3x-\left(-6\right)=9
Whakaurua te -6 mō y ki 3x-y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=3
Me tango 6 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 3.
x=1,y=-6
Kua oti te pūnaha te whakatau.