Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x+12y=-6,2x+5y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x+12y=-6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=-12y-6
Me tango 12y mai i ngā taha e rua o te whārite.
x=\frac{1}{6}\left(-12y-6\right)
Whakawehea ngā taha e rua ki te 6.
x=-2y-1
Whakareatia \frac{1}{6} ki te -12y-6.
2\left(-2y-1\right)+5y=0
Whakakapia te -2y-1 mō te x ki tērā atu whārite, 2x+5y=0.
-4y-2+5y=0
Whakareatia 2 ki te -2y-1.
y-2=0
Tāpiri -4y ki te 5y.
y=2
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=-2\times 2-1
Whakaurua te 2 mō y ki x=-2y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-4-1
Whakareatia -2 ki te 2.
x=-5
Tāpiri -1 ki te -4.
x=-5,y=2
Kua oti te pūnaha te whakatau.
6x+12y=-6,2x+5y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&12\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&12\\2&5\end{matrix}\right))\left(\begin{matrix}6&12\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&12\\2&5\end{matrix}\right))\left(\begin{matrix}-6\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&12\\2&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&12\\2&5\end{matrix}\right))\left(\begin{matrix}-6\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&12\\2&5\end{matrix}\right))\left(\begin{matrix}-6\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6\times 5-12\times 2}&-\frac{12}{6\times 5-12\times 2}\\-\frac{2}{6\times 5-12\times 2}&\frac{6}{6\times 5-12\times 2}\end{matrix}\right)\left(\begin{matrix}-6\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}&-2\\-\frac{1}{3}&1\end{matrix}\right)\left(\begin{matrix}-6\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\left(-6\right)\\-\frac{1}{3}\left(-6\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-5,y=2
Tangohia ngā huānga poukapa x me y.
6x+12y=-6,2x+5y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 6x+2\times 12y=2\left(-6\right),6\times 2x+6\times 5y=0
Kia ōrite ai a 6x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
12x+24y=-12,12x+30y=0
Whakarūnātia.
12x-12x+24y-30y=-12
Me tango 12x+30y=0 mai i 12x+24y=-12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
24y-30y=-12
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-6y=-12
Tāpiri 24y ki te -30y.
y=2
Whakawehea ngā taha e rua ki te -6.
2x+5\times 2=0
Whakaurua te 2 mō y ki 2x+5y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+10=0
Whakareatia 5 ki te 2.
2x=-10
Me tango 10 mai i ngā taha e rua o te whārite.
x=-5
Whakawehea ngā taha e rua ki te 2.
x=-5,y=2
Kua oti te pūnaha te whakatau.