Whakaoti mō s, t
t=8
s = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Tohaina
Kua tāruatia ki te papatopenga
6s+7t=47,8s+3t=12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6s+7t=47
Kōwhiria tētahi o ngā whārite ka whakaotia mō te s mā te wehe i te s i te taha mauī o te tohu ōrite.
6s=-7t+47
Me tango 7t mai i ngā taha e rua o te whārite.
s=\frac{1}{6}\left(-7t+47\right)
Whakawehea ngā taha e rua ki te 6.
s=-\frac{7}{6}t+\frac{47}{6}
Whakareatia \frac{1}{6} ki te -7t+47.
8\left(-\frac{7}{6}t+\frac{47}{6}\right)+3t=12
Whakakapia te \frac{-7t+47}{6} mō te s ki tērā atu whārite, 8s+3t=12.
-\frac{28}{3}t+\frac{188}{3}+3t=12
Whakareatia 8 ki te \frac{-7t+47}{6}.
-\frac{19}{3}t+\frac{188}{3}=12
Tāpiri -\frac{28t}{3} ki te 3t.
-\frac{19}{3}t=-\frac{152}{3}
Me tango \frac{188}{3} mai i ngā taha e rua o te whārite.
t=8
Whakawehea ngā taha e rua o te whārite ki te -\frac{19}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
s=-\frac{7}{6}\times 8+\frac{47}{6}
Whakaurua te 8 mō t ki s=-\frac{7}{6}t+\frac{47}{6}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō s hāngai tonu.
s=-\frac{28}{3}+\frac{47}{6}
Whakareatia -\frac{7}{6} ki te 8.
s=-\frac{3}{2}
Tāpiri \frac{47}{6} ki te -\frac{28}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
s=-\frac{3}{2},t=8
Kua oti te pūnaha te whakatau.
6s+7t=47,8s+3t=12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&7\\8&3\end{matrix}\right)\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}47\\12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&7\\8&3\end{matrix}\right))\left(\begin{matrix}6&7\\8&3\end{matrix}\right)\left(\begin{matrix}s\\t\end{matrix}\right)=inverse(\left(\begin{matrix}6&7\\8&3\end{matrix}\right))\left(\begin{matrix}47\\12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&7\\8&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}s\\t\end{matrix}\right)=inverse(\left(\begin{matrix}6&7\\8&3\end{matrix}\right))\left(\begin{matrix}47\\12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}s\\t\end{matrix}\right)=inverse(\left(\begin{matrix}6&7\\8&3\end{matrix}\right))\left(\begin{matrix}47\\12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}\frac{3}{6\times 3-7\times 8}&-\frac{7}{6\times 3-7\times 8}\\-\frac{8}{6\times 3-7\times 8}&\frac{6}{6\times 3-7\times 8}\end{matrix}\right)\left(\begin{matrix}47\\12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{38}&\frac{7}{38}\\\frac{4}{19}&-\frac{3}{19}\end{matrix}\right)\left(\begin{matrix}47\\12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{38}\times 47+\frac{7}{38}\times 12\\\frac{4}{19}\times 47-\frac{3}{19}\times 12\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2}\\8\end{matrix}\right)
Mahia ngā tātaitanga.
s=-\frac{3}{2},t=8
Tangohia ngā huānga poukapa s me t.
6s+7t=47,8s+3t=12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8\times 6s+8\times 7t=8\times 47,6\times 8s+6\times 3t=6\times 12
Kia ōrite ai a 6s me 8s, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
48s+56t=376,48s+18t=72
Whakarūnātia.
48s-48s+56t-18t=376-72
Me tango 48s+18t=72 mai i 48s+56t=376 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
56t-18t=376-72
Tāpiri 48s ki te -48s. Ka whakakore atu ngā kupu 48s me -48s, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
38t=376-72
Tāpiri 56t ki te -18t.
38t=304
Tāpiri 376 ki te -72.
t=8
Whakawehea ngā taha e rua ki te 38.
8s+3\times 8=12
Whakaurua te 8 mō t ki 8s+3t=12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō s hāngai tonu.
8s+24=12
Whakareatia 3 ki te 8.
8s=-12
Me tango 24 mai i ngā taha e rua o te whārite.
s=-\frac{3}{2}
Whakawehea ngā taha e rua ki te 8.
s=-\frac{3}{2},t=8
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}