Aromātai
-65
Tauwehe
-65
Tohaina
Kua tāruatia ki te papatopenga
\frac{6}{\frac{-8}{-5+3}+\frac{12}{-2+2\times 4}}-24+3\left(-12+5\times 2\right)-\frac{36}{\frac{-8}{-2}+\frac{12}{-2+8}}-24+3\left(-12+5\times 2\right)
Whakareatia te 3 ki te -8, ka -24. Whakareatia te 3 ki te -8, ka -24.
\frac{6}{\frac{-8}{-2}+\frac{12}{-2+2\times 4}}-24+3\left(-12+5\times 2\right)-\frac{36}{\frac{-8}{-2}+\frac{12}{-2+8}}-24+3\left(-12+5\times 2\right)
Tāpirihia te -5 ki te 3, ka -2.
\frac{6}{4+\frac{12}{-2+2\times 4}}-24+3\left(-12+5\times 2\right)-\frac{36}{\frac{-8}{-2}+\frac{12}{-2+8}}-24+3\left(-12+5\times 2\right)
Whakawehea te -8 ki te -2, kia riro ko 4.
\frac{6}{4+\frac{12}{-2+8}}-24+3\left(-12+5\times 2\right)-\frac{36}{\frac{-8}{-2}+\frac{12}{-2+8}}-24+3\left(-12+5\times 2\right)
Whakareatia te 2 ki te 4, ka 8.
\frac{6}{4+\frac{12}{6}}-24+3\left(-12+5\times 2\right)-\frac{36}{\frac{-8}{-2}+\frac{12}{-2+8}}-24+3\left(-12+5\times 2\right)
Tāpirihia te -2 ki te 8, ka 6.
\frac{6}{4+2}-24+3\left(-12+5\times 2\right)-\frac{36}{\frac{-8}{-2}+\frac{12}{-2+8}}-24+3\left(-12+5\times 2\right)
Whakawehea te 12 ki te 6, kia riro ko 2.
\frac{6}{6}-24+3\left(-12+5\times 2\right)-\frac{36}{\frac{-8}{-2}+\frac{12}{-2+8}}-24+3\left(-12+5\times 2\right)
Tāpirihia te 4 ki te 2, ka 6.
1-24+3\left(-12+5\times 2\right)-\frac{36}{\frac{-8}{-2}+\frac{12}{-2+8}}-24+3\left(-12+5\times 2\right)
Whakawehea te 6 ki te 6, kia riro ko 1.
-23+3\left(-12+5\times 2\right)-\frac{36}{\frac{-8}{-2}+\frac{12}{-2+8}}-24+3\left(-12+5\times 2\right)
Tangohia te 24 i te 1, ka -23.
-23+3\left(-12+10\right)-\frac{36}{\frac{-8}{-2}+\frac{12}{-2+8}}-24+3\left(-12+5\times 2\right)
Whakareatia te 5 ki te 2, ka 10.
-23+3\left(-2\right)-\frac{36}{\frac{-8}{-2}+\frac{12}{-2+8}}-24+3\left(-12+5\times 2\right)
Tāpirihia te -12 ki te 10, ka -2.
-23-6-\frac{36}{\frac{-8}{-2}+\frac{12}{-2+8}}-24+3\left(-12+5\times 2\right)
Whakareatia te 3 ki te -2, ka -6.
-29-\frac{36}{\frac{-8}{-2}+\frac{12}{-2+8}}-24+3\left(-12+5\times 2\right)
Tangohia te 6 i te -23, ka -29.
-29-\frac{36}{4+\frac{12}{-2+8}}-24+3\left(-12+5\times 2\right)
Whakawehea te -8 ki te -2, kia riro ko 4.
-29-\frac{36}{4+\frac{12}{6}}-24+3\left(-12+5\times 2\right)
Tāpirihia te -2 ki te 8, ka 6.
-29-\frac{36}{4+2}-24+3\left(-12+5\times 2\right)
Whakawehea te 12 ki te 6, kia riro ko 2.
-29-\frac{36}{6}-24+3\left(-12+5\times 2\right)
Tāpirihia te 4 ki te 2, ka 6.
-29-6-24+3\left(-12+5\times 2\right)
Whakawehea te 36 ki te 6, kia riro ko 6.
-35-24+3\left(-12+5\times 2\right)
Tangohia te 6 i te -29, ka -35.
-59+3\left(-12+5\times 2\right)
Tangohia te 24 i te -35, ka -59.
-59+3\left(-12+10\right)
Whakareatia te 5 ki te 2, ka 10.
-59+3\left(-2\right)
Tāpirihia te -12 ki te 10, ka -2.
-59-6
Whakareatia te 3 ki te -2, ka -6.
-65
Tangohia te 6 i te -59, ka -65.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}