Whakaoti mō y, x
x = -\frac{143}{9} = -15\frac{8}{9} \approx -15.888888889
y = \frac{91}{9} = 10\frac{1}{9} \approx 10.111111111
Graph
Tohaina
Kua tāruatia ki te papatopenga
5y+4x=-13
Whakaarohia te whārite tuatahi. Me tāpiri te 4x ki ngā taha e rua.
5y+4x=-13,6y+3x=13
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5y+4x=-13
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
5y=-4x-13
Me tango 4x mai i ngā taha e rua o te whārite.
y=\frac{1}{5}\left(-4x-13\right)
Whakawehea ngā taha e rua ki te 5.
y=-\frac{4}{5}x-\frac{13}{5}
Whakareatia \frac{1}{5} ki te -4x-13.
6\left(-\frac{4}{5}x-\frac{13}{5}\right)+3x=13
Whakakapia te \frac{-4x-13}{5} mō te y ki tērā atu whārite, 6y+3x=13.
-\frac{24}{5}x-\frac{78}{5}+3x=13
Whakareatia 6 ki te \frac{-4x-13}{5}.
-\frac{9}{5}x-\frac{78}{5}=13
Tāpiri -\frac{24x}{5} ki te 3x.
-\frac{9}{5}x=\frac{143}{5}
Me tāpiri \frac{78}{5} ki ngā taha e rua o te whārite.
x=-\frac{143}{9}
Whakawehea ngā taha e rua o te whārite ki te -\frac{9}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=-\frac{4}{5}\left(-\frac{143}{9}\right)-\frac{13}{5}
Whakaurua te -\frac{143}{9} mō x ki y=-\frac{4}{5}x-\frac{13}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{572}{45}-\frac{13}{5}
Whakareatia -\frac{4}{5} ki te -\frac{143}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{91}{9}
Tāpiri -\frac{13}{5} ki te \frac{572}{45} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{91}{9},x=-\frac{143}{9}
Kua oti te pūnaha te whakatau.
5y+4x=-13
Whakaarohia te whārite tuatahi. Me tāpiri te 4x ki ngā taha e rua.
5y+4x=-13,6y+3x=13
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&4\\6&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-13\\13\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&4\\6&3\end{matrix}\right))\left(\begin{matrix}5&4\\6&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\6&3\end{matrix}\right))\left(\begin{matrix}-13\\13\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&4\\6&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\6&3\end{matrix}\right))\left(\begin{matrix}-13\\13\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\6&3\end{matrix}\right))\left(\begin{matrix}-13\\13\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-4\times 6}&-\frac{4}{5\times 3-4\times 6}\\-\frac{6}{5\times 3-4\times 6}&\frac{5}{5\times 3-4\times 6}\end{matrix}\right)\left(\begin{matrix}-13\\13\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{4}{9}\\\frac{2}{3}&-\frac{5}{9}\end{matrix}\right)\left(\begin{matrix}-13\\13\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-13\right)+\frac{4}{9}\times 13\\\frac{2}{3}\left(-13\right)-\frac{5}{9}\times 13\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{91}{9}\\-\frac{143}{9}\end{matrix}\right)
Mahia ngā tātaitanga.
y=\frac{91}{9},x=-\frac{143}{9}
Tangohia ngā huānga poukapa y me x.
5y+4x=-13
Whakaarohia te whārite tuatahi. Me tāpiri te 4x ki ngā taha e rua.
5y+4x=-13,6y+3x=13
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 5y+6\times 4x=6\left(-13\right),5\times 6y+5\times 3x=5\times 13
Kia ōrite ai a 5y me 6y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
30y+24x=-78,30y+15x=65
Whakarūnātia.
30y-30y+24x-15x=-78-65
Me tango 30y+15x=65 mai i 30y+24x=-78 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
24x-15x=-78-65
Tāpiri 30y ki te -30y. Ka whakakore atu ngā kupu 30y me -30y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
9x=-78-65
Tāpiri 24x ki te -15x.
9x=-143
Tāpiri -78 ki te -65.
x=-\frac{143}{9}
Whakawehea ngā taha e rua ki te 9.
6y+3\left(-\frac{143}{9}\right)=13
Whakaurua te -\frac{143}{9} mō x ki 6y+3x=13. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
6y-\frac{143}{3}=13
Whakareatia 3 ki te -\frac{143}{9}.
6y=\frac{182}{3}
Me tāpiri \frac{143}{3} ki ngā taha e rua o te whārite.
y=\frac{91}{9}
Whakawehea ngā taha e rua ki te 6.
y=\frac{91}{9},x=-\frac{143}{9}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}