Whakaoti mō y, x
x = -\frac{38}{3} = -12\frac{2}{3} \approx -12.666666667
y = \frac{50}{3} = 16\frac{2}{3} \approx 16.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
5y+8x=-18,5y+2x=58
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5y+8x=-18
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
5y=-8x-18
Me tango 8x mai i ngā taha e rua o te whārite.
y=\frac{1}{5}\left(-8x-18\right)
Whakawehea ngā taha e rua ki te 5.
y=-\frac{8}{5}x-\frac{18}{5}
Whakareatia \frac{1}{5} ki te -8x-18.
5\left(-\frac{8}{5}x-\frac{18}{5}\right)+2x=58
Whakakapia te \frac{-8x-18}{5} mō te y ki tērā atu whārite, 5y+2x=58.
-8x-18+2x=58
Whakareatia 5 ki te \frac{-8x-18}{5}.
-6x-18=58
Tāpiri -8x ki te 2x.
-6x=76
Me tāpiri 18 ki ngā taha e rua o te whārite.
x=-\frac{38}{3}
Whakawehea ngā taha e rua ki te -6.
y=-\frac{8}{5}\left(-\frac{38}{3}\right)-\frac{18}{5}
Whakaurua te -\frac{38}{3} mō x ki y=-\frac{8}{5}x-\frac{18}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{304}{15}-\frac{18}{5}
Whakareatia -\frac{8}{5} ki te -\frac{38}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{50}{3}
Tāpiri -\frac{18}{5} ki te \frac{304}{15} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{50}{3},x=-\frac{38}{3}
Kua oti te pūnaha te whakatau.
5y+8x=-18,5y+2x=58
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&8\\5&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-18\\58\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&8\\5&2\end{matrix}\right))\left(\begin{matrix}5&8\\5&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&8\\5&2\end{matrix}\right))\left(\begin{matrix}-18\\58\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&8\\5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&8\\5&2\end{matrix}\right))\left(\begin{matrix}-18\\58\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&8\\5&2\end{matrix}\right))\left(\begin{matrix}-18\\58\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-8\times 5}&-\frac{8}{5\times 2-8\times 5}\\-\frac{5}{5\times 2-8\times 5}&\frac{5}{5\times 2-8\times 5}\end{matrix}\right)\left(\begin{matrix}-18\\58\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{15}&\frac{4}{15}\\\frac{1}{6}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}-18\\58\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{15}\left(-18\right)+\frac{4}{15}\times 58\\\frac{1}{6}\left(-18\right)-\frac{1}{6}\times 58\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{50}{3}\\-\frac{38}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
y=\frac{50}{3},x=-\frac{38}{3}
Tangohia ngā huānga poukapa y me x.
5y+8x=-18,5y+2x=58
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5y-5y+8x-2x=-18-58
Me tango 5y+2x=58 mai i 5y+8x=-18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8x-2x=-18-58
Tāpiri 5y ki te -5y. Ka whakakore atu ngā kupu 5y me -5y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
6x=-18-58
Tāpiri 8x ki te -2x.
6x=-76
Tāpiri -18 ki te -58.
x=-\frac{38}{3}
Whakawehea ngā taha e rua ki te 6.
5y+2\left(-\frac{38}{3}\right)=58
Whakaurua te -\frac{38}{3} mō x ki 5y+2x=58. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
5y-\frac{76}{3}=58
Whakareatia 2 ki te -\frac{38}{3}.
5y=\frac{250}{3}
Me tāpiri \frac{76}{3} ki ngā taha e rua o te whārite.
y=\frac{50}{3}
Whakawehea ngā taha e rua ki te 5.
y=\frac{50}{3},x=-\frac{38}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}