Whakaoti mō y, x
x=\frac{7}{11}\approx 0.636363636
y=\frac{6}{11}\approx 0.545454545
Graph
Tohaina
Kua tāruatia ki te papatopenga
5y+3-9x=0
Whakaarohia te whārite tuatahi. Tangohia te 9x mai i ngā taha e rua.
5y-9x=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4x-2-y=0
Whakaarohia te whārite tuarua. Tangohia te 1y mai i ngā taha e rua.
4x-y=2
Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
5y-9x=-3,-y+4x=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5y-9x=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
5y=9x-3
Me tāpiri 9x ki ngā taha e rua o te whārite.
y=\frac{1}{5}\left(9x-3\right)
Whakawehea ngā taha e rua ki te 5.
y=\frac{9}{5}x-\frac{3}{5}
Whakareatia \frac{1}{5} ki te 9x-3.
-\left(\frac{9}{5}x-\frac{3}{5}\right)+4x=2
Whakakapia te \frac{9x-3}{5} mō te y ki tērā atu whārite, -y+4x=2.
-\frac{9}{5}x+\frac{3}{5}+4x=2
Whakareatia -1 ki te \frac{9x-3}{5}.
\frac{11}{5}x+\frac{3}{5}=2
Tāpiri -\frac{9x}{5} ki te 4x.
\frac{11}{5}x=\frac{7}{5}
Me tango \frac{3}{5} mai i ngā taha e rua o te whārite.
x=\frac{7}{11}
Whakawehea ngā taha e rua o te whārite ki te \frac{11}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=\frac{9}{5}\times \frac{7}{11}-\frac{3}{5}
Whakaurua te \frac{7}{11} mō x ki y=\frac{9}{5}x-\frac{3}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{63}{55}-\frac{3}{5}
Whakareatia \frac{9}{5} ki te \frac{7}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{6}{11}
Tāpiri -\frac{3}{5} ki te \frac{63}{55} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{6}{11},x=\frac{7}{11}
Kua oti te pūnaha te whakatau.
5y+3-9x=0
Whakaarohia te whārite tuatahi. Tangohia te 9x mai i ngā taha e rua.
5y-9x=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4x-2-y=0
Whakaarohia te whārite tuarua. Tangohia te 1y mai i ngā taha e rua.
4x-y=2
Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
5y-9x=-3,-y+4x=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-9\\-1&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-9\\-1&4\end{matrix}\right))\left(\begin{matrix}5&-9\\-1&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&-9\\-1&4\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-9\\-1&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&-9\\-1&4\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&-9\\-1&4\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5\times 4-\left(-9\left(-1\right)\right)}&-\frac{-9}{5\times 4-\left(-9\left(-1\right)\right)}\\-\frac{-1}{5\times 4-\left(-9\left(-1\right)\right)}&\frac{5}{5\times 4-\left(-9\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}&\frac{9}{11}\\\frac{1}{11}&\frac{5}{11}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}\left(-3\right)+\frac{9}{11}\times 2\\\frac{1}{11}\left(-3\right)+\frac{5}{11}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{6}{11}\\\frac{7}{11}\end{matrix}\right)
Mahia ngā tātaitanga.
y=\frac{6}{11},x=\frac{7}{11}
Tangohia ngā huānga poukapa y me x.
5y+3-9x=0
Whakaarohia te whārite tuatahi. Tangohia te 9x mai i ngā taha e rua.
5y-9x=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4x-2-y=0
Whakaarohia te whārite tuarua. Tangohia te 1y mai i ngā taha e rua.
4x-y=2
Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
5y-9x=-3,-y+4x=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5y-\left(-9x\right)=-\left(-3\right),5\left(-1\right)y+5\times 4x=5\times 2
Kia ōrite ai a 5y me -y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
-5y+9x=3,-5y+20x=10
Whakarūnātia.
-5y+5y+9x-20x=3-10
Me tango -5y+20x=10 mai i -5y+9x=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9x-20x=3-10
Tāpiri -5y ki te 5y. Ka whakakore atu ngā kupu -5y me 5y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-11x=3-10
Tāpiri 9x ki te -20x.
-11x=-7
Tāpiri 3 ki te -10.
x=\frac{7}{11}
Whakawehea ngā taha e rua ki te -11.
-y+4\times \frac{7}{11}=2
Whakaurua te \frac{7}{11} mō x ki -y+4x=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-y+\frac{28}{11}=2
Whakareatia 4 ki te \frac{7}{11}.
-y=-\frac{6}{11}
Me tango \frac{28}{11} mai i ngā taha e rua o te whārite.
y=\frac{6}{11}
Whakawehea ngā taha e rua ki te -1.
y=\frac{6}{11},x=\frac{7}{11}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}