Whakaoti mō x, y
x = \frac{6}{5} = 1\frac{1}{5} = 1.2
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-y=8,10x+3y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=y+8
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(y+8\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{1}{5}y+\frac{8}{5}
Whakareatia \frac{1}{5} ki te y+8.
10\left(\frac{1}{5}y+\frac{8}{5}\right)+3y=6
Whakakapia te \frac{8+y}{5} mō te x ki tērā atu whārite, 10x+3y=6.
2y+16+3y=6
Whakareatia 10 ki te \frac{8+y}{5}.
5y+16=6
Tāpiri 2y ki te 3y.
5y=-10
Me tango 16 mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te 5.
x=\frac{1}{5}\left(-2\right)+\frac{8}{5}
Whakaurua te -2 mō y ki x=\frac{1}{5}y+\frac{8}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-2+8}{5}
Whakareatia \frac{1}{5} ki te -2.
x=\frac{6}{5}
Tāpiri \frac{8}{5} ki te -\frac{2}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{6}{5},y=-2
Kua oti te pūnaha te whakatau.
5x-y=8,10x+3y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-1\\10&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-1\\10&3\end{matrix}\right))\left(\begin{matrix}5&-1\\10&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\10&3\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-1\\10&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\10&3\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\10&3\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-\left(-10\right)}&-\frac{-1}{5\times 3-\left(-10\right)}\\-\frac{10}{5\times 3-\left(-10\right)}&\frac{5}{5\times 3-\left(-10\right)}\end{matrix}\right)\left(\begin{matrix}8\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{25}&\frac{1}{25}\\-\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}8\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{25}\times 8+\frac{1}{25}\times 6\\-\frac{2}{5}\times 8+\frac{1}{5}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{6}{5},y=-2
Tangohia ngā huānga poukapa x me y.
5x-y=8,10x+3y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
10\times 5x+10\left(-1\right)y=10\times 8,5\times 10x+5\times 3y=5\times 6
Kia ōrite ai a 5x me 10x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 10 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
50x-10y=80,50x+15y=30
Whakarūnātia.
50x-50x-10y-15y=80-30
Me tango 50x+15y=30 mai i 50x-10y=80 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-10y-15y=80-30
Tāpiri 50x ki te -50x. Ka whakakore atu ngā kupu 50x me -50x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-25y=80-30
Tāpiri -10y ki te -15y.
-25y=50
Tāpiri 80 ki te -30.
y=-2
Whakawehea ngā taha e rua ki te -25.
10x+3\left(-2\right)=6
Whakaurua te -2 mō y ki 10x+3y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
10x-6=6
Whakareatia 3 ki te -2.
10x=12
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=\frac{6}{5}
Whakawehea ngā taha e rua ki te 10.
x=\frac{6}{5},y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}