Whakaoti mō x, y
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
y = \frac{11}{3} = 3\frac{2}{3} \approx 3.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-y=3,-2x+4y=12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=y+3
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(y+3\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{1}{5}y+\frac{3}{5}
Whakareatia \frac{1}{5} ki te y+3.
-2\left(\frac{1}{5}y+\frac{3}{5}\right)+4y=12
Whakakapia te \frac{3+y}{5} mō te x ki tērā atu whārite, -2x+4y=12.
-\frac{2}{5}y-\frac{6}{5}+4y=12
Whakareatia -2 ki te \frac{3+y}{5}.
\frac{18}{5}y-\frac{6}{5}=12
Tāpiri -\frac{2y}{5} ki te 4y.
\frac{18}{5}y=\frac{66}{5}
Me tāpiri \frac{6}{5} ki ngā taha e rua o te whārite.
y=\frac{11}{3}
Whakawehea ngā taha e rua o te whārite ki te \frac{18}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{5}\times \frac{11}{3}+\frac{3}{5}
Whakaurua te \frac{11}{3} mō y ki x=\frac{1}{5}y+\frac{3}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{11}{15}+\frac{3}{5}
Whakareatia \frac{1}{5} ki te \frac{11}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{4}{3}
Tāpiri \frac{3}{5} ki te \frac{11}{15} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{4}{3},y=\frac{11}{3}
Kua oti te pūnaha te whakatau.
5x-y=3,-2x+4y=12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-1\\-2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-1\\-2&4\end{matrix}\right))\left(\begin{matrix}5&-1\\-2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-2&4\end{matrix}\right))\left(\begin{matrix}3\\12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-1\\-2&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-2&4\end{matrix}\right))\left(\begin{matrix}3\\12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-2&4\end{matrix}\right))\left(\begin{matrix}3\\12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5\times 4-\left(-\left(-2\right)\right)}&-\frac{-1}{5\times 4-\left(-\left(-2\right)\right)}\\-\frac{-2}{5\times 4-\left(-\left(-2\right)\right)}&\frac{5}{5\times 4-\left(-\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}3\\12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}&\frac{1}{18}\\\frac{1}{9}&\frac{5}{18}\end{matrix}\right)\left(\begin{matrix}3\\12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}\times 3+\frac{1}{18}\times 12\\\frac{1}{9}\times 3+\frac{5}{18}\times 12\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}\\\frac{11}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{4}{3},y=\frac{11}{3}
Tangohia ngā huānga poukapa x me y.
5x-y=3,-2x+4y=12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\times 5x-2\left(-1\right)y=-2\times 3,5\left(-2\right)x+5\times 4y=5\times 12
Kia ōrite ai a 5x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
-10x+2y=-6,-10x+20y=60
Whakarūnātia.
-10x+10x+2y-20y=-6-60
Me tango -10x+20y=60 mai i -10x+2y=-6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y-20y=-6-60
Tāpiri -10x ki te 10x. Ka whakakore atu ngā kupu -10x me 10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-18y=-6-60
Tāpiri 2y ki te -20y.
-18y=-66
Tāpiri -6 ki te -60.
y=\frac{11}{3}
Whakawehea ngā taha e rua ki te -18.
-2x+4\times \frac{11}{3}=12
Whakaurua te \frac{11}{3} mō y ki -2x+4y=12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x+\frac{44}{3}=12
Whakareatia 4 ki te \frac{11}{3}.
-2x=-\frac{8}{3}
Me tango \frac{44}{3} mai i ngā taha e rua o te whārite.
x=\frac{4}{3}
Whakawehea ngā taha e rua ki te -2.
x=\frac{4}{3},y=\frac{11}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}