Whakaoti mō x, y
x=3
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-y=13,2x+3y=12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-y=13
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=y+13
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(y+13\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{1}{5}y+\frac{13}{5}
Whakareatia \frac{1}{5} ki te y+13.
2\left(\frac{1}{5}y+\frac{13}{5}\right)+3y=12
Whakakapia te \frac{13+y}{5} mō te x ki tērā atu whārite, 2x+3y=12.
\frac{2}{5}y+\frac{26}{5}+3y=12
Whakareatia 2 ki te \frac{13+y}{5}.
\frac{17}{5}y+\frac{26}{5}=12
Tāpiri \frac{2y}{5} ki te 3y.
\frac{17}{5}y=\frac{34}{5}
Me tango \frac{26}{5} mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{17}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{5}\times 2+\frac{13}{5}
Whakaurua te 2 mō y ki x=\frac{1}{5}y+\frac{13}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{2+13}{5}
Whakareatia \frac{1}{5} ki te 2.
x=3
Tāpiri \frac{13}{5} ki te \frac{2}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=2
Kua oti te pūnaha te whakatau.
5x-y=13,2x+3y=12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}5&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}13\\12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-1\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}13\\12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}13\\12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-\left(-2\right)}&-\frac{-1}{5\times 3-\left(-2\right)}\\-\frac{2}{5\times 3-\left(-2\right)}&\frac{5}{5\times 3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}13\\12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}&\frac{1}{17}\\-\frac{2}{17}&\frac{5}{17}\end{matrix}\right)\left(\begin{matrix}13\\12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}\times 13+\frac{1}{17}\times 12\\-\frac{2}{17}\times 13+\frac{5}{17}\times 12\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=2
Tangohia ngā huānga poukapa x me y.
5x-y=13,2x+3y=12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 5x+2\left(-1\right)y=2\times 13,5\times 2x+5\times 3y=5\times 12
Kia ōrite ai a 5x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
10x-2y=26,10x+15y=60
Whakarūnātia.
10x-10x-2y-15y=26-60
Me tango 10x+15y=60 mai i 10x-2y=26 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y-15y=26-60
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-17y=26-60
Tāpiri -2y ki te -15y.
-17y=-34
Tāpiri 26 ki te -60.
y=2
Whakawehea ngā taha e rua ki te -17.
2x+3\times 2=12
Whakaurua te 2 mō y ki 2x+3y=12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+6=12
Whakareatia 3 ki te 2.
2x=6
Me tango 6 mai i ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 2.
x=3,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}