Whakaoti mō x, y
x = -\frac{13}{3} = -4\frac{1}{3} \approx -4.333333333
y = -\frac{11}{3} = -3\frac{2}{3} \approx -3.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-7y=4,-x+2y=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-7y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=7y+4
Me tāpiri 7y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(7y+4\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{7}{5}y+\frac{4}{5}
Whakareatia \frac{1}{5} ki te 7y+4.
-\left(\frac{7}{5}y+\frac{4}{5}\right)+2y=-3
Whakakapia te \frac{7y+4}{5} mō te x ki tērā atu whārite, -x+2y=-3.
-\frac{7}{5}y-\frac{4}{5}+2y=-3
Whakareatia -1 ki te \frac{7y+4}{5}.
\frac{3}{5}y-\frac{4}{5}=-3
Tāpiri -\frac{7y}{5} ki te 2y.
\frac{3}{5}y=-\frac{11}{5}
Me tāpiri \frac{4}{5} ki ngā taha e rua o te whārite.
y=-\frac{11}{3}
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{7}{5}\left(-\frac{11}{3}\right)+\frac{4}{5}
Whakaurua te -\frac{11}{3} mō y ki x=\frac{7}{5}y+\frac{4}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{77}{15}+\frac{4}{5}
Whakareatia \frac{7}{5} ki te -\frac{11}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{13}{3}
Tāpiri \frac{4}{5} ki te -\frac{77}{15} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{13}{3},y=-\frac{11}{3}
Kua oti te pūnaha te whakatau.
5x-7y=4,-x+2y=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-7\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-7\\-1&2\end{matrix}\right))\left(\begin{matrix}5&-7\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-1&2\end{matrix}\right))\left(\begin{matrix}4\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-7\\-1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-1&2\end{matrix}\right))\left(\begin{matrix}4\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-1&2\end{matrix}\right))\left(\begin{matrix}4\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-7\left(-1\right)\right)}&-\frac{-7}{5\times 2-\left(-7\left(-1\right)\right)}\\-\frac{-1}{5\times 2-\left(-7\left(-1\right)\right)}&\frac{5}{5\times 2-\left(-7\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{7}{3}\\\frac{1}{3}&\frac{5}{3}\end{matrix}\right)\left(\begin{matrix}4\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 4+\frac{7}{3}\left(-3\right)\\\frac{1}{3}\times 4+\frac{5}{3}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{3}\\-\frac{11}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{13}{3},y=-\frac{11}{3}
Tangohia ngā huānga poukapa x me y.
5x-7y=4,-x+2y=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5x-\left(-7y\right)=-4,5\left(-1\right)x+5\times 2y=5\left(-3\right)
Kia ōrite ai a 5x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
-5x+7y=-4,-5x+10y=-15
Whakarūnātia.
-5x+5x+7y-10y=-4+15
Me tango -5x+10y=-15 mai i -5x+7y=-4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
7y-10y=-4+15
Tāpiri -5x ki te 5x. Ka whakakore atu ngā kupu -5x me 5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3y=-4+15
Tāpiri 7y ki te -10y.
-3y=11
Tāpiri -4 ki te 15.
y=-\frac{11}{3}
Whakawehea ngā taha e rua ki te -3.
-x+2\left(-\frac{11}{3}\right)=-3
Whakaurua te -\frac{11}{3} mō y ki -x+2y=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x-\frac{22}{3}=-3
Whakareatia 2 ki te -\frac{11}{3}.
-x=\frac{13}{3}
Me tāpiri \frac{22}{3} ki ngā taha e rua o te whārite.
x=-\frac{13}{3}
Whakawehea ngā taha e rua ki te -1.
x=-\frac{13}{3},y=-\frac{11}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}