Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x-7y=-27,2x+3y=24
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-7y=-27
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=7y-27
Me tāpiri 7y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(7y-27\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{7}{5}y-\frac{27}{5}
Whakareatia \frac{1}{5} ki te 7y-27.
2\left(\frac{7}{5}y-\frac{27}{5}\right)+3y=24
Whakakapia te \frac{7y-27}{5} mō te x ki tērā atu whārite, 2x+3y=24.
\frac{14}{5}y-\frac{54}{5}+3y=24
Whakareatia 2 ki te \frac{7y-27}{5}.
\frac{29}{5}y-\frac{54}{5}=24
Tāpiri \frac{14y}{5} ki te 3y.
\frac{29}{5}y=\frac{174}{5}
Me tāpiri \frac{54}{5} ki ngā taha e rua o te whārite.
y=6
Whakawehea ngā taha e rua o te whārite ki te \frac{29}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{7}{5}\times 6-\frac{27}{5}
Whakaurua te 6 mō y ki x=\frac{7}{5}y-\frac{27}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{42-27}{5}
Whakareatia \frac{7}{5} ki te 6.
x=3
Tāpiri -\frac{27}{5} ki te \frac{42}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=6
Kua oti te pūnaha te whakatau.
5x-7y=-27,2x+3y=24
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-7\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-27\\24\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-7\\2&3\end{matrix}\right))\left(\begin{matrix}5&-7\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\2&3\end{matrix}\right))\left(\begin{matrix}-27\\24\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-7\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\2&3\end{matrix}\right))\left(\begin{matrix}-27\\24\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\2&3\end{matrix}\right))\left(\begin{matrix}-27\\24\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-\left(-7\times 2\right)}&-\frac{-7}{5\times 3-\left(-7\times 2\right)}\\-\frac{2}{5\times 3-\left(-7\times 2\right)}&\frac{5}{5\times 3-\left(-7\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-27\\24\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{29}&\frac{7}{29}\\-\frac{2}{29}&\frac{5}{29}\end{matrix}\right)\left(\begin{matrix}-27\\24\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{29}\left(-27\right)+\frac{7}{29}\times 24\\-\frac{2}{29}\left(-27\right)+\frac{5}{29}\times 24\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\6\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=6
Tangohia ngā huānga poukapa x me y.
5x-7y=-27,2x+3y=24
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 5x+2\left(-7\right)y=2\left(-27\right),5\times 2x+5\times 3y=5\times 24
Kia ōrite ai a 5x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
10x-14y=-54,10x+15y=120
Whakarūnātia.
10x-10x-14y-15y=-54-120
Me tango 10x+15y=120 mai i 10x-14y=-54 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-14y-15y=-54-120
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-29y=-54-120
Tāpiri -14y ki te -15y.
-29y=-174
Tāpiri -54 ki te -120.
y=6
Whakawehea ngā taha e rua ki te -29.
2x+3\times 6=24
Whakaurua te 6 mō y ki 2x+3y=24. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+18=24
Whakareatia 3 ki te 6.
2x=6
Me tango 18 mai i ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 2.
x=3,y=6
Kua oti te pūnaha te whakatau.