Whakaoti mō x, y
x = \frac{88}{47} = 1\frac{41}{47} \approx 1.872340426
y=-\frac{5}{47}\approx -0.106382979
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-6y=10,2x+7y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-6y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=6y+10
Me tāpiri 6y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(6y+10\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{6}{5}y+2
Whakareatia \frac{1}{5} ki te 6y+10.
2\left(\frac{6}{5}y+2\right)+7y=3
Whakakapia te \frac{6y}{5}+2 mō te x ki tērā atu whārite, 2x+7y=3.
\frac{12}{5}y+4+7y=3
Whakareatia 2 ki te \frac{6y}{5}+2.
\frac{47}{5}y+4=3
Tāpiri \frac{12y}{5} ki te 7y.
\frac{47}{5}y=-1
Me tango 4 mai i ngā taha e rua o te whārite.
y=-\frac{5}{47}
Whakawehea ngā taha e rua o te whārite ki te \frac{47}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{6}{5}\left(-\frac{5}{47}\right)+2
Whakaurua te -\frac{5}{47} mō y ki x=\frac{6}{5}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{6}{47}+2
Whakareatia \frac{6}{5} ki te -\frac{5}{47} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{88}{47}
Tāpiri 2 ki te -\frac{6}{47}.
x=\frac{88}{47},y=-\frac{5}{47}
Kua oti te pūnaha te whakatau.
5x-6y=10,2x+7y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-6\\2&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-6\\2&7\end{matrix}\right))\left(\begin{matrix}5&-6\\2&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\2&7\end{matrix}\right))\left(\begin{matrix}10\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-6\\2&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\2&7\end{matrix}\right))\left(\begin{matrix}10\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\2&7\end{matrix}\right))\left(\begin{matrix}10\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-\left(-6\times 2\right)}&-\frac{-6}{5\times 7-\left(-6\times 2\right)}\\-\frac{2}{5\times 7-\left(-6\times 2\right)}&\frac{5}{5\times 7-\left(-6\times 2\right)}\end{matrix}\right)\left(\begin{matrix}10\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{47}&\frac{6}{47}\\-\frac{2}{47}&\frac{5}{47}\end{matrix}\right)\left(\begin{matrix}10\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{47}\times 10+\frac{6}{47}\times 3\\-\frac{2}{47}\times 10+\frac{5}{47}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{88}{47}\\-\frac{5}{47}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{88}{47},y=-\frac{5}{47}
Tangohia ngā huānga poukapa x me y.
5x-6y=10,2x+7y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 5x+2\left(-6\right)y=2\times 10,5\times 2x+5\times 7y=5\times 3
Kia ōrite ai a 5x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
10x-12y=20,10x+35y=15
Whakarūnātia.
10x-10x-12y-35y=20-15
Me tango 10x+35y=15 mai i 10x-12y=20 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-12y-35y=20-15
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-47y=20-15
Tāpiri -12y ki te -35y.
-47y=5
Tāpiri 20 ki te -15.
y=-\frac{5}{47}
Whakawehea ngā taha e rua ki te -47.
2x+7\left(-\frac{5}{47}\right)=3
Whakaurua te -\frac{5}{47} mō y ki 2x+7y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-\frac{35}{47}=3
Whakareatia 7 ki te -\frac{5}{47}.
2x=\frac{176}{47}
Me tāpiri \frac{35}{47} ki ngā taha e rua o te whārite.
x=\frac{88}{47}
Whakawehea ngā taha e rua ki te 2.
x=\frac{88}{47},y=-\frac{5}{47}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}