Whakaoti mō x, y
x=-5
y=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-6y=-25,4x-3y+20=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-6y=-25
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=6y-25
Me tāpiri 6y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(6y-25\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{6}{5}y-5
Whakareatia \frac{1}{5} ki te 6y-25.
4\left(\frac{6}{5}y-5\right)-3y+20=0
Whakakapia te \frac{6y}{5}-5 mō te x ki tērā atu whārite, 4x-3y+20=0.
\frac{24}{5}y-20-3y+20=0
Whakareatia 4 ki te \frac{6y}{5}-5.
\frac{9}{5}y-20+20=0
Tāpiri \frac{24y}{5} ki te -3y.
\frac{9}{5}y=0
Tāpiri -20 ki te 20.
y=0
Whakawehea ngā taha e rua o te whārite ki te \frac{9}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-5
Whakaurua te 0 mō y ki x=\frac{6}{5}y-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-5,y=0
Kua oti te pūnaha te whakatau.
5x-6y=-25,4x-3y+20=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-6\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-25\\-20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-6\\4&-3\end{matrix}\right))\left(\begin{matrix}5&-6\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\4&-3\end{matrix}\right))\left(\begin{matrix}-25\\-20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-6\\4&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\4&-3\end{matrix}\right))\left(\begin{matrix}-25\\-20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\4&-3\end{matrix}\right))\left(\begin{matrix}-25\\-20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5\left(-3\right)-\left(-6\times 4\right)}&-\frac{-6}{5\left(-3\right)-\left(-6\times 4\right)}\\-\frac{4}{5\left(-3\right)-\left(-6\times 4\right)}&\frac{5}{5\left(-3\right)-\left(-6\times 4\right)}\end{matrix}\right)\left(\begin{matrix}-25\\-20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\-\frac{4}{9}&\frac{5}{9}\end{matrix}\right)\left(\begin{matrix}-25\\-20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-25\right)+\frac{2}{3}\left(-20\right)\\-\frac{4}{9}\left(-25\right)+\frac{5}{9}\left(-20\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=-5,y=0
Tangohia ngā huānga poukapa x me y.
5x-6y=-25,4x-3y+20=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 5x+4\left(-6\right)y=4\left(-25\right),5\times 4x+5\left(-3\right)y+5\times 20=0
Kia ōrite ai a 5x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
20x-24y=-100,20x-15y+100=0
Whakarūnātia.
20x-20x-24y+15y-100=-100
Me tango 20x-15y+100=0 mai i 20x-24y=-100 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-24y+15y-100=-100
Tāpiri 20x ki te -20x. Ka whakakore atu ngā kupu 20x me -20x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-9y-100=-100
Tāpiri -24y ki te 15y.
-9y=0
Me tāpiri 100 ki ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua ki te -9.
4x+20=0
Whakaurua te 0 mō y ki 4x-3y+20=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x=-20
Me tango 20 mai i ngā taha e rua o te whārite.
x=-5
Whakawehea ngā taha e rua ki te 4.
x=-5,y=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}