Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x-5y=5,-6x+5y=-6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-5y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=5y+5
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(5y+5\right)
Whakawehea ngā taha e rua ki te 5.
x=y+1
Whakareatia \frac{1}{5} ki te 5+5y.
-6\left(y+1\right)+5y=-6
Whakakapia te y+1 mō te x ki tērā atu whārite, -6x+5y=-6.
-6y-6+5y=-6
Whakareatia -6 ki te y+1.
-y-6=-6
Tāpiri -6y ki te 5y.
-y=0
Me tāpiri 6 ki ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua ki te -1.
x=1
Whakaurua te 0 mō y ki x=y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1,y=0
Kua oti te pūnaha te whakatau.
5x-5y=5,-6x+5y=-6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right))\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right))\left(\begin{matrix}5\\-6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-5\\-6&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right))\left(\begin{matrix}5\\-6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right))\left(\begin{matrix}5\\-6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-\left(-5\left(-6\right)\right)}&-\frac{-5}{5\times 5-\left(-5\left(-6\right)\right)}\\-\frac{-6}{5\times 5-\left(-5\left(-6\right)\right)}&\frac{5}{5\times 5-\left(-5\left(-6\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\-6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-1\\-\frac{6}{5}&-1\end{matrix}\right)\left(\begin{matrix}5\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5-\left(-6\right)\\-\frac{6}{5}\times 5-\left(-6\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=0
Tangohia ngā huānga poukapa x me y.
5x-5y=5,-6x+5y=-6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-6\times 5x-6\left(-5\right)y=-6\times 5,5\left(-6\right)x+5\times 5y=5\left(-6\right)
Kia ōrite ai a 5x me -6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
-30x+30y=-30,-30x+25y=-30
Whakarūnātia.
-30x+30x+30y-25y=-30+30
Me tango -30x+25y=-30 mai i -30x+30y=-30 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
30y-25y=-30+30
Tāpiri -30x ki te 30x. Ka whakakore atu ngā kupu -30x me 30x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=-30+30
Tāpiri 30y ki te -25y.
5y=0
Tāpiri -30 ki te 30.
y=0
Whakawehea ngā taha e rua ki te 5.
-6x=-6
Whakaurua te 0 mō y ki -6x+5y=-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1
Whakawehea ngā taha e rua ki te -6.
x=1,y=0
Kua oti te pūnaha te whakatau.