Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x-5y=-5,-5x+6y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-5y=-5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=5y-5
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(5y-5\right)
Whakawehea ngā taha e rua ki te 5.
x=y-1
Whakareatia \frac{1}{5} ki te -5+5y.
-5\left(y-1\right)+6y=1
Whakakapia te y-1 mō te x ki tērā atu whārite, -5x+6y=1.
-5y+5+6y=1
Whakareatia -5 ki te y-1.
y+5=1
Tāpiri -5y ki te 6y.
y=-4
Me tango 5 mai i ngā taha e rua o te whārite.
x=-4-1
Whakaurua te -4 mō y ki x=y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-5
Tāpiri -1 ki te -4.
x=-5,y=-4
Kua oti te pūnaha te whakatau.
5x-5y=-5,-5x+6y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-5\\-5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-5\\-5&6\end{matrix}\right))\left(\begin{matrix}5&-5\\-5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-5\\-5&6\end{matrix}\right))\left(\begin{matrix}-5\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-5\\-5&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-5\\-5&6\end{matrix}\right))\left(\begin{matrix}-5\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-5\\-5&6\end{matrix}\right))\left(\begin{matrix}-5\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5\times 6-\left(-5\left(-5\right)\right)}&-\frac{-5}{5\times 6-\left(-5\left(-5\right)\right)}\\-\frac{-5}{5\times 6-\left(-5\left(-5\right)\right)}&\frac{5}{5\times 6-\left(-5\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}-5\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}&1\\1&1\end{matrix}\right)\left(\begin{matrix}-5\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}\left(-5\right)+1\\-5+1\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=-5,y=-4
Tangohia ngā huānga poukapa x me y.
5x-5y=-5,-5x+6y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5\times 5x-5\left(-5\right)y=-5\left(-5\right),5\left(-5\right)x+5\times 6y=5
Kia ōrite ai a 5x me -5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
-25x+25y=25,-25x+30y=5
Whakarūnātia.
-25x+25x+25y-30y=25-5
Me tango -25x+30y=5 mai i -25x+25y=25 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
25y-30y=25-5
Tāpiri -25x ki te 25x. Ka whakakore atu ngā kupu -25x me 25x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=25-5
Tāpiri 25y ki te -30y.
-5y=20
Tāpiri 25 ki te -5.
y=-4
Whakawehea ngā taha e rua ki te -5.
-5x+6\left(-4\right)=1
Whakaurua te -4 mō y ki -5x+6y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-5x-24=1
Whakareatia 6 ki te -4.
-5x=25
Me tāpiri 24 ki ngā taha e rua o te whārite.
x=-5
Whakawehea ngā taha e rua ki te -5.
x=-5,y=-4
Kua oti te pūnaha te whakatau.