Whakaoti mō x, y
x=\frac{5}{47}\approx 0.106382979
y=-\frac{23}{47}\approx -0.489361702
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-3y-2=0,4x+7y+3=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-3y-2=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x-3y=2
Me tāpiri 2 ki ngā taha e rua o te whārite.
5x=3y+2
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(3y+2\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{3}{5}y+\frac{2}{5}
Whakareatia \frac{1}{5} ki te 3y+2.
4\left(\frac{3}{5}y+\frac{2}{5}\right)+7y+3=0
Whakakapia te \frac{3y+2}{5} mō te x ki tērā atu whārite, 4x+7y+3=0.
\frac{12}{5}y+\frac{8}{5}+7y+3=0
Whakareatia 4 ki te \frac{3y+2}{5}.
\frac{47}{5}y+\frac{8}{5}+3=0
Tāpiri \frac{12y}{5} ki te 7y.
\frac{47}{5}y+\frac{23}{5}=0
Tāpiri \frac{8}{5} ki te 3.
\frac{47}{5}y=-\frac{23}{5}
Me tango \frac{23}{5} mai i ngā taha e rua o te whārite.
y=-\frac{23}{47}
Whakawehea ngā taha e rua o te whārite ki te \frac{47}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{5}\left(-\frac{23}{47}\right)+\frac{2}{5}
Whakaurua te -\frac{23}{47} mō y ki x=\frac{3}{5}y+\frac{2}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{69}{235}+\frac{2}{5}
Whakareatia \frac{3}{5} ki te -\frac{23}{47} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{5}{47}
Tāpiri \frac{2}{5} ki te -\frac{69}{235} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{5}{47},y=-\frac{23}{47}
Kua oti te pūnaha te whakatau.
5x-3y-2=0,4x+7y+3=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-3\\4&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-3\\4&7\end{matrix}\right))\left(\begin{matrix}5&-3\\4&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\4&7\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-3\\4&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\4&7\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\4&7\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-\left(-3\times 4\right)}&-\frac{-3}{5\times 7-\left(-3\times 4\right)}\\-\frac{4}{5\times 7-\left(-3\times 4\right)}&\frac{5}{5\times 7-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}2\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{47}&\frac{3}{47}\\-\frac{4}{47}&\frac{5}{47}\end{matrix}\right)\left(\begin{matrix}2\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{47}\times 2+\frac{3}{47}\left(-3\right)\\-\frac{4}{47}\times 2+\frac{5}{47}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{47}\\-\frac{23}{47}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{5}{47},y=-\frac{23}{47}
Tangohia ngā huānga poukapa x me y.
5x-3y-2=0,4x+7y+3=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 5x+4\left(-3\right)y+4\left(-2\right)=0,5\times 4x+5\times 7y+5\times 3=0
Kia ōrite ai a 5x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
20x-12y-8=0,20x+35y+15=0
Whakarūnātia.
20x-20x-12y-35y-8-15=0
Me tango 20x+35y+15=0 mai i 20x-12y-8=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-12y-35y-8-15=0
Tāpiri 20x ki te -20x. Ka whakakore atu ngā kupu 20x me -20x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-47y-8-15=0
Tāpiri -12y ki te -35y.
-47y-23=0
Tāpiri -8 ki te -15.
-47y=23
Me tāpiri 23 ki ngā taha e rua o te whārite.
y=-\frac{23}{47}
Whakawehea ngā taha e rua ki te -47.
4x+7\left(-\frac{23}{47}\right)+3=0
Whakaurua te -\frac{23}{47} mō y ki 4x+7y+3=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x-\frac{161}{47}+3=0
Whakareatia 7 ki te -\frac{23}{47}.
4x-\frac{20}{47}=0
Tāpiri -\frac{161}{47} ki te 3.
4x=\frac{20}{47}
Me tāpiri \frac{20}{47} ki ngā taha e rua o te whārite.
x=\frac{5}{47}
Whakawehea ngā taha e rua ki te 4.
x=\frac{5}{47},y=-\frac{23}{47}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}