Whakaoti mō x, y
x=-\frac{11}{28}\approx -0.392857143
y = -\frac{37}{28} = -1\frac{9}{28} \approx -1.321428571
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-3y=2,6x+2y=-5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-3y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=3y+2
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(3y+2\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{3}{5}y+\frac{2}{5}
Whakareatia \frac{1}{5} ki te 3y+2.
6\left(\frac{3}{5}y+\frac{2}{5}\right)+2y=-5
Whakakapia te \frac{3y+2}{5} mō te x ki tērā atu whārite, 6x+2y=-5.
\frac{18}{5}y+\frac{12}{5}+2y=-5
Whakareatia 6 ki te \frac{3y+2}{5}.
\frac{28}{5}y+\frac{12}{5}=-5
Tāpiri \frac{18y}{5} ki te 2y.
\frac{28}{5}y=-\frac{37}{5}
Me tango \frac{12}{5} mai i ngā taha e rua o te whārite.
y=-\frac{37}{28}
Whakawehea ngā taha e rua o te whārite ki te \frac{28}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{5}\left(-\frac{37}{28}\right)+\frac{2}{5}
Whakaurua te -\frac{37}{28} mō y ki x=\frac{3}{5}y+\frac{2}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{111}{140}+\frac{2}{5}
Whakareatia \frac{3}{5} ki te -\frac{37}{28} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{11}{28}
Tāpiri \frac{2}{5} ki te -\frac{111}{140} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{11}{28},y=-\frac{37}{28}
Kua oti te pūnaha te whakatau.
5x-3y=2,6x+2y=-5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-3\\6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-3\\6&2\end{matrix}\right))\left(\begin{matrix}5&-3\\6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\6&2\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-3\\6&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\6&2\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\6&2\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-3\times 6\right)}&-\frac{-3}{5\times 2-\left(-3\times 6\right)}\\-\frac{6}{5\times 2-\left(-3\times 6\right)}&\frac{5}{5\times 2-\left(-3\times 6\right)}\end{matrix}\right)\left(\begin{matrix}2\\-5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}&\frac{3}{28}\\-\frac{3}{14}&\frac{5}{28}\end{matrix}\right)\left(\begin{matrix}2\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}\times 2+\frac{3}{28}\left(-5\right)\\-\frac{3}{14}\times 2+\frac{5}{28}\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{28}\\-\frac{37}{28}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{11}{28},y=-\frac{37}{28}
Tangohia ngā huānga poukapa x me y.
5x-3y=2,6x+2y=-5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 5x+6\left(-3\right)y=6\times 2,5\times 6x+5\times 2y=5\left(-5\right)
Kia ōrite ai a 5x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
30x-18y=12,30x+10y=-25
Whakarūnātia.
30x-30x-18y-10y=12+25
Me tango 30x+10y=-25 mai i 30x-18y=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-18y-10y=12+25
Tāpiri 30x ki te -30x. Ka whakakore atu ngā kupu 30x me -30x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-28y=12+25
Tāpiri -18y ki te -10y.
-28y=37
Tāpiri 12 ki te 25.
y=-\frac{37}{28}
Whakawehea ngā taha e rua ki te -28.
6x+2\left(-\frac{37}{28}\right)=-5
Whakaurua te -\frac{37}{28} mō y ki 6x+2y=-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x-\frac{37}{14}=-5
Whakareatia 2 ki te -\frac{37}{28}.
6x=-\frac{33}{14}
Me tāpiri \frac{37}{14} ki ngā taha e rua o te whārite.
x=-\frac{11}{28}
Whakawehea ngā taha e rua ki te 6.
x=-\frac{11}{28},y=-\frac{37}{28}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}