Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x-3y=1800,6x-4y=1600
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-3y=1800
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=3y+1800
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(3y+1800\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{3}{5}y+360
Whakareatia \frac{1}{5} ki te 1800+3y.
6\left(\frac{3}{5}y+360\right)-4y=1600
Whakakapia te \frac{3y}{5}+360 mō te x ki tērā atu whārite, 6x-4y=1600.
\frac{18}{5}y+2160-4y=1600
Whakareatia 6 ki te \frac{3y}{5}+360.
-\frac{2}{5}y+2160=1600
Tāpiri \frac{18y}{5} ki te -4y.
-\frac{2}{5}y=-560
Me tango 2160 mai i ngā taha e rua o te whārite.
y=1400
Whakawehea ngā taha e rua o te whārite ki te -\frac{2}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{5}\times 1400+360
Whakaurua te 1400 mō y ki x=\frac{3}{5}y+360. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=840+360
Whakareatia \frac{3}{5} ki te 1400.
x=1200
Tāpiri 360 ki te 840.
x=1200,y=1400
Kua oti te pūnaha te whakatau.
5x-3y=1800,6x-4y=1600
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-3\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1800\\1600\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-3\\6&-4\end{matrix}\right))\left(\begin{matrix}5&-3\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\6&-4\end{matrix}\right))\left(\begin{matrix}1800\\1600\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-3\\6&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\6&-4\end{matrix}\right))\left(\begin{matrix}1800\\1600\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\6&-4\end{matrix}\right))\left(\begin{matrix}1800\\1600\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{5\left(-4\right)-\left(-3\times 6\right)}&-\frac{-3}{5\left(-4\right)-\left(-3\times 6\right)}\\-\frac{6}{5\left(-4\right)-\left(-3\times 6\right)}&\frac{5}{5\left(-4\right)-\left(-3\times 6\right)}\end{matrix}\right)\left(\begin{matrix}1800\\1600\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-\frac{3}{2}\\3&-\frac{5}{2}\end{matrix}\right)\left(\begin{matrix}1800\\1600\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 1800-\frac{3}{2}\times 1600\\3\times 1800-\frac{5}{2}\times 1600\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1200\\1400\end{matrix}\right)
Mahia ngā tātaitanga.
x=1200,y=1400
Tangohia ngā huānga poukapa x me y.
5x-3y=1800,6x-4y=1600
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 5x+6\left(-3\right)y=6\times 1800,5\times 6x+5\left(-4\right)y=5\times 1600
Kia ōrite ai a 5x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
30x-18y=10800,30x-20y=8000
Whakarūnātia.
30x-30x-18y+20y=10800-8000
Me tango 30x-20y=8000 mai i 30x-18y=10800 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-18y+20y=10800-8000
Tāpiri 30x ki te -30x. Ka whakakore atu ngā kupu 30x me -30x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=10800-8000
Tāpiri -18y ki te 20y.
2y=2800
Tāpiri 10800 ki te -8000.
y=1400
Whakawehea ngā taha e rua ki te 2.
6x-4\times 1400=1600
Whakaurua te 1400 mō y ki 6x-4y=1600. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x-5600=1600
Whakareatia -4 ki te 1400.
6x=7200
Me tāpiri 5600 ki ngā taha e rua o te whārite.
x=1200
Whakawehea ngā taha e rua ki te 6.
x=1200,y=1400
Kua oti te pūnaha te whakatau.