Whakaoti mō x, y, z
x=-\frac{16}{35}\approx -0.457142857
y = -\frac{15}{7} = -2\frac{1}{7} \approx -2.142857143
z=\frac{6}{35}\approx 0.171428571
Tohaina
Kua tāruatia ki te papatopenga
x-y-4z=1 5x-2y+2=4 2x-4y+2z=8
Me raupapa anō ngā whārite.
x=y+4z+1
Me whakaoti te x-y-4z=1 mō x.
5\left(y+4z+1\right)-2y+2=4 2\left(y+4z+1\right)-4y+2z=8
Whakakapia te y+4z+1 mō te x i te whārite tuarua me te tuatoru.
y=-\frac{20}{3}z-1 z=\frac{3}{5}+\frac{1}{5}y
Me whakaoti ēnei whārite mō y me z takitahi.
z=\frac{3}{5}+\frac{1}{5}\left(-\frac{20}{3}z-1\right)
Whakakapia te -\frac{20}{3}z-1 mō te y i te whārite z=\frac{3}{5}+\frac{1}{5}y.
z=\frac{6}{35}
Me whakaoti te z=\frac{3}{5}+\frac{1}{5}\left(-\frac{20}{3}z-1\right) mō z.
y=-\frac{20}{3}\times \frac{6}{35}-1
Whakakapia te \frac{6}{35} mō te z i te whārite y=-\frac{20}{3}z-1.
y=-\frac{15}{7}
Tātaitia te y i te y=-\frac{20}{3}\times \frac{6}{35}-1.
x=-\frac{15}{7}+4\times \frac{6}{35}+1
Whakakapia te -\frac{15}{7} mō te y me te \frac{6}{35} mō z i te whārite x=y+4z+1.
x=-\frac{16}{35}
Tātaitia te x i te x=-\frac{15}{7}+4\times \frac{6}{35}+1.
x=-\frac{16}{35} y=-\frac{15}{7} z=\frac{6}{35}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}