Whakaoti mō x, z
x=0
z=0
Pātaitai
Simultaneous Equation
\left. \begin{array} { l } { 5 x = 7 z } \\ { 8 x = 9 z } \end{array} \right.
Tohaina
Kua tāruatia ki te papatopenga
5x-7z=0
Whakaarohia te whārite tuatahi. Tangohia te 7z mai i ngā taha e rua.
8x-9z=0
Whakaarohia te whārite tuarua. Tangohia te 9z mai i ngā taha e rua.
5x-7z=0,8x-9z=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-7z=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=7z
Me tāpiri 7z ki ngā taha e rua o te whārite.
x=\frac{1}{5}\times 7z
Whakawehea ngā taha e rua ki te 5.
x=\frac{7}{5}z
Whakareatia \frac{1}{5} ki te 7z.
8\times \frac{7}{5}z-9z=0
Whakakapia te \frac{7z}{5} mō te x ki tērā atu whārite, 8x-9z=0.
\frac{56}{5}z-9z=0
Whakareatia 8 ki te \frac{7z}{5}.
\frac{11}{5}z=0
Tāpiri \frac{56z}{5} ki te -9z.
z=0
Whakawehea ngā taha e rua o te whārite ki te \frac{11}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=0
Whakaurua te 0 mō z ki x=\frac{7}{5}z. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=0,z=0
Kua oti te pūnaha te whakatau.
5x-7z=0
Whakaarohia te whārite tuatahi. Tangohia te 7z mai i ngā taha e rua.
8x-9z=0
Whakaarohia te whārite tuarua. Tangohia te 9z mai i ngā taha e rua.
5x-7z=0,8x-9z=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-7\\8&-9\end{matrix}\right)\left(\begin{matrix}x\\z\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-7\\8&-9\end{matrix}\right))\left(\begin{matrix}5&-7\\8&-9\end{matrix}\right)\left(\begin{matrix}x\\z\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\8&-9\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-7\\8&-9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\z\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\8&-9\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\z\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\8&-9\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\z\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{5\left(-9\right)-\left(-7\times 8\right)}&-\frac{-7}{5\left(-9\right)-\left(-7\times 8\right)}\\-\frac{8}{5\left(-9\right)-\left(-7\times 8\right)}&\frac{5}{5\left(-9\right)-\left(-7\times 8\right)}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\z\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{11}&\frac{7}{11}\\-\frac{8}{11}&\frac{5}{11}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\z\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Whakareatia ngā poukapa.
x=0,z=0
Tangohia ngā huānga poukapa x me z.
5x-7z=0
Whakaarohia te whārite tuatahi. Tangohia te 7z mai i ngā taha e rua.
8x-9z=0
Whakaarohia te whārite tuarua. Tangohia te 9z mai i ngā taha e rua.
5x-7z=0,8x-9z=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8\times 5x+8\left(-7\right)z=0,5\times 8x+5\left(-9\right)z=0
Kia ōrite ai a 5x me 8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
40x-56z=0,40x-45z=0
Whakarūnātia.
40x-40x-56z+45z=0
Me tango 40x-45z=0 mai i 40x-56z=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-56z+45z=0
Tāpiri 40x ki te -40x. Ka whakakore atu ngā kupu 40x me -40x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-11z=0
Tāpiri -56z ki te 45z.
z=0
Whakawehea ngā taha e rua ki te -11.
8x=0
Whakaurua te 0 mō z ki 8x-9z=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=0
Whakawehea ngā taha e rua ki te 8.
x=0,z=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}