Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x-2y=16
Whakaarohia te whārite tuatahi. Tangohia te 2y mai i ngā taha e rua.
7x+2y=32
Whakaarohia te whārite tuarua. Me tāpiri te 2y ki ngā taha e rua.
5x-2y=16,7x+2y=32
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-2y=16
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=2y+16
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(2y+16\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{2}{5}y+\frac{16}{5}
Whakareatia \frac{1}{5} ki te 16+2y.
7\left(\frac{2}{5}y+\frac{16}{5}\right)+2y=32
Whakakapia te \frac{16+2y}{5} mō te x ki tērā atu whārite, 7x+2y=32.
\frac{14}{5}y+\frac{112}{5}+2y=32
Whakareatia 7 ki te \frac{16+2y}{5}.
\frac{24}{5}y+\frac{112}{5}=32
Tāpiri \frac{14y}{5} ki te 2y.
\frac{24}{5}y=\frac{48}{5}
Me tango \frac{112}{5} mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{24}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2}{5}\times 2+\frac{16}{5}
Whakaurua te 2 mō y ki x=\frac{2}{5}y+\frac{16}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{4+16}{5}
Whakareatia \frac{2}{5} ki te 2.
x=4
Tāpiri \frac{16}{5} ki te \frac{4}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=4,y=2
Kua oti te pūnaha te whakatau.
5x-2y=16
Whakaarohia te whārite tuatahi. Tangohia te 2y mai i ngā taha e rua.
7x+2y=32
Whakaarohia te whārite tuarua. Me tāpiri te 2y ki ngā taha e rua.
5x-2y=16,7x+2y=32
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-2\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\32\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-2\\7&2\end{matrix}\right))\left(\begin{matrix}5&-2\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\7&2\end{matrix}\right))\left(\begin{matrix}16\\32\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-2\\7&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\7&2\end{matrix}\right))\left(\begin{matrix}16\\32\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\7&2\end{matrix}\right))\left(\begin{matrix}16\\32\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-2\times 7\right)}&-\frac{-2}{5\times 2-\left(-2\times 7\right)}\\-\frac{7}{5\times 2-\left(-2\times 7\right)}&\frac{5}{5\times 2-\left(-2\times 7\right)}\end{matrix}\right)\left(\begin{matrix}16\\32\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&\frac{1}{12}\\-\frac{7}{24}&\frac{5}{24}\end{matrix}\right)\left(\begin{matrix}16\\32\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\times 16+\frac{1}{12}\times 32\\-\frac{7}{24}\times 16+\frac{5}{24}\times 32\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=2
Tangohia ngā huānga poukapa x me y.
5x-2y=16
Whakaarohia te whārite tuatahi. Tangohia te 2y mai i ngā taha e rua.
7x+2y=32
Whakaarohia te whārite tuarua. Me tāpiri te 2y ki ngā taha e rua.
5x-2y=16,7x+2y=32
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\times 5x+7\left(-2\right)y=7\times 16,5\times 7x+5\times 2y=5\times 32
Kia ōrite ai a 5x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
35x-14y=112,35x+10y=160
Whakarūnātia.
35x-35x-14y-10y=112-160
Me tango 35x+10y=160 mai i 35x-14y=112 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-14y-10y=112-160
Tāpiri 35x ki te -35x. Ka whakakore atu ngā kupu 35x me -35x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-24y=112-160
Tāpiri -14y ki te -10y.
-24y=-48
Tāpiri 112 ki te -160.
y=2
Whakawehea ngā taha e rua ki te -24.
7x+2\times 2=32
Whakaurua te 2 mō y ki 7x+2y=32. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x+4=32
Whakareatia 2 ki te 2.
7x=28
Me tango 4 mai i ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te 7.
x=4,y=2
Kua oti te pūnaha te whakatau.