Whakaoti mō x, y, z
x=0
y=1
z = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Tohaina
Kua tāruatia ki te papatopenga
y=-5x+2z+4
Me whakaoti te 5x+y-2z=4 mō y.
2x-5x+2z+4=1 5x+3\left(-5x+2z+4\right)-2z=6
Whakakapia te -5x+2z+4 mō te y i te whārite tuarua me te tuatoru.
x=\frac{2}{3}z+1 z=-\frac{3}{2}+\frac{5}{2}x
Me whakaoti ēnei whārite mō x me z takitahi.
z=-\frac{3}{2}+\frac{5}{2}\left(\frac{2}{3}z+1\right)
Whakakapia te \frac{2}{3}z+1 mō te x i te whārite z=-\frac{3}{2}+\frac{5}{2}x.
z=-\frac{3}{2}
Me whakaoti te z=-\frac{3}{2}+\frac{5}{2}\left(\frac{2}{3}z+1\right) mō z.
x=\frac{2}{3}\left(-\frac{3}{2}\right)+1
Whakakapia te -\frac{3}{2} mō te z i te whārite x=\frac{2}{3}z+1.
x=0
Tātaitia te x i te x=\frac{2}{3}\left(-\frac{3}{2}\right)+1.
y=-5\times 0+2\left(-\frac{3}{2}\right)+4
Whakakapia te 0 mō te x me te -\frac{3}{2} mō z i te whārite y=-5x+2z+4.
y=1
Tātaitia te y i te y=-5\times 0+2\left(-\frac{3}{2}\right)+4.
x=0 y=1 z=-\frac{3}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}