Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x+y=9,10x-7y=-18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+y=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-y+9
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-y+9\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{1}{5}y+\frac{9}{5}
Whakareatia \frac{1}{5} ki te -y+9.
10\left(-\frac{1}{5}y+\frac{9}{5}\right)-7y=-18
Whakakapia te \frac{-y+9}{5} mō te x ki tērā atu whārite, 10x-7y=-18.
-2y+18-7y=-18
Whakareatia 10 ki te \frac{-y+9}{5}.
-9y+18=-18
Tāpiri -2y ki te -7y.
-9y=-36
Me tango 18 mai i ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua ki te -9.
x=-\frac{1}{5}\times 4+\frac{9}{5}
Whakaurua te 4 mō y ki x=-\frac{1}{5}y+\frac{9}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-4+9}{5}
Whakareatia -\frac{1}{5} ki te 4.
x=1
Tāpiri \frac{9}{5} ki te -\frac{4}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=4
Kua oti te pūnaha te whakatau.
5x+y=9,10x-7y=-18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&1\\10&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&1\\10&-7\end{matrix}\right))\left(\begin{matrix}5&1\\10&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\10&-7\end{matrix}\right))\left(\begin{matrix}9\\-18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&1\\10&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\10&-7\end{matrix}\right))\left(\begin{matrix}9\\-18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\10&-7\end{matrix}\right))\left(\begin{matrix}9\\-18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{5\left(-7\right)-10}&-\frac{1}{5\left(-7\right)-10}\\-\frac{10}{5\left(-7\right)-10}&\frac{5}{5\left(-7\right)-10}\end{matrix}\right)\left(\begin{matrix}9\\-18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{45}&\frac{1}{45}\\\frac{2}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}9\\-18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{45}\times 9+\frac{1}{45}\left(-18\right)\\\frac{2}{9}\times 9-\frac{1}{9}\left(-18\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=4
Tangohia ngā huānga poukapa x me y.
5x+y=9,10x-7y=-18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
10\times 5x+10y=10\times 9,5\times 10x+5\left(-7\right)y=5\left(-18\right)
Kia ōrite ai a 5x me 10x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 10 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
50x+10y=90,50x-35y=-90
Whakarūnātia.
50x-50x+10y+35y=90+90
Me tango 50x-35y=-90 mai i 50x+10y=90 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
10y+35y=90+90
Tāpiri 50x ki te -50x. Ka whakakore atu ngā kupu 50x me -50x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
45y=90+90
Tāpiri 10y ki te 35y.
45y=180
Tāpiri 90 ki te 90.
y=4
Whakawehea ngā taha e rua ki te 45.
10x-7\times 4=-18
Whakaurua te 4 mō y ki 10x-7y=-18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
10x-28=-18
Whakareatia -7 ki te 4.
10x=10
Me tāpiri 28 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 10.
x=1,y=4
Kua oti te pūnaha te whakatau.