Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x+y=7,-3x+7y=11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-y+7
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-y+7\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{1}{5}y+\frac{7}{5}
Whakareatia \frac{1}{5} ki te -y+7.
-3\left(-\frac{1}{5}y+\frac{7}{5}\right)+7y=11
Whakakapia te \frac{-y+7}{5} mō te x ki tērā atu whārite, -3x+7y=11.
\frac{3}{5}y-\frac{21}{5}+7y=11
Whakareatia -3 ki te \frac{-y+7}{5}.
\frac{38}{5}y-\frac{21}{5}=11
Tāpiri \frac{3y}{5} ki te 7y.
\frac{38}{5}y=\frac{76}{5}
Me tāpiri \frac{21}{5} ki ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{38}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{5}\times 2+\frac{7}{5}
Whakaurua te 2 mō y ki x=-\frac{1}{5}y+\frac{7}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-2+7}{5}
Whakareatia -\frac{1}{5} ki te 2.
x=1
Tāpiri \frac{7}{5} ki te -\frac{2}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=2
Kua oti te pūnaha te whakatau.
5x+y=7,-3x+7y=11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&1\\-3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&1\\-3&7\end{matrix}\right))\left(\begin{matrix}5&1\\-3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\-3&7\end{matrix}\right))\left(\begin{matrix}7\\11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&1\\-3&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\-3&7\end{matrix}\right))\left(\begin{matrix}7\\11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\-3&7\end{matrix}\right))\left(\begin{matrix}7\\11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-\left(-3\right)}&-\frac{1}{5\times 7-\left(-3\right)}\\-\frac{-3}{5\times 7-\left(-3\right)}&\frac{5}{5\times 7-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}7\\11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{38}&-\frac{1}{38}\\\frac{3}{38}&\frac{5}{38}\end{matrix}\right)\left(\begin{matrix}7\\11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{38}\times 7-\frac{1}{38}\times 11\\\frac{3}{38}\times 7+\frac{5}{38}\times 11\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=2
Tangohia ngā huānga poukapa x me y.
5x+y=7,-3x+7y=11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3\times 5x-3y=-3\times 7,5\left(-3\right)x+5\times 7y=5\times 11
Kia ōrite ai a 5x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
-15x-3y=-21,-15x+35y=55
Whakarūnātia.
-15x+15x-3y-35y=-21-55
Me tango -15x+35y=55 mai i -15x-3y=-21 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-35y=-21-55
Tāpiri -15x ki te 15x. Ka whakakore atu ngā kupu -15x me 15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-38y=-21-55
Tāpiri -3y ki te -35y.
-38y=-76
Tāpiri -21 ki te -55.
y=2
Whakawehea ngā taha e rua ki te -38.
-3x+7\times 2=11
Whakaurua te 2 mō y ki -3x+7y=11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x+14=11
Whakareatia 7 ki te 2.
-3x=-3
Me tango 14 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -3.
x=1,y=2
Kua oti te pūnaha te whakatau.