Whakaoti mō x, y
x = \frac{283}{71} = 3\frac{70}{71} \approx 3.985915493
y = \frac{518}{71} = 7\frac{21}{71} \approx 7.295774648
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x+7y=71,8x-3y=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+7y=71
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-7y+71
Me tango 7y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-7y+71\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{7}{5}y+\frac{71}{5}
Whakareatia \frac{1}{5} ki te -7y+71.
8\left(-\frac{7}{5}y+\frac{71}{5}\right)-3y=10
Whakakapia te \frac{-7y+71}{5} mō te x ki tērā atu whārite, 8x-3y=10.
-\frac{56}{5}y+\frac{568}{5}-3y=10
Whakareatia 8 ki te \frac{-7y+71}{5}.
-\frac{71}{5}y+\frac{568}{5}=10
Tāpiri -\frac{56y}{5} ki te -3y.
-\frac{71}{5}y=-\frac{518}{5}
Me tango \frac{568}{5} mai i ngā taha e rua o te whārite.
y=\frac{518}{71}
Whakawehea ngā taha e rua o te whārite ki te -\frac{71}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{7}{5}\times \frac{518}{71}+\frac{71}{5}
Whakaurua te \frac{518}{71} mō y ki x=-\frac{7}{5}y+\frac{71}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{3626}{355}+\frac{71}{5}
Whakareatia -\frac{7}{5} ki te \frac{518}{71} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{283}{71}
Tāpiri \frac{71}{5} ki te -\frac{3626}{355} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{283}{71},y=\frac{518}{71}
Kua oti te pūnaha te whakatau.
5x+7y=71,8x-3y=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&7\\8&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}71\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&7\\8&-3\end{matrix}\right))\left(\begin{matrix}5&7\\8&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\8&-3\end{matrix}\right))\left(\begin{matrix}71\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&7\\8&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\8&-3\end{matrix}\right))\left(\begin{matrix}71\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\8&-3\end{matrix}\right))\left(\begin{matrix}71\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5\left(-3\right)-7\times 8}&-\frac{7}{5\left(-3\right)-7\times 8}\\-\frac{8}{5\left(-3\right)-7\times 8}&\frac{5}{5\left(-3\right)-7\times 8}\end{matrix}\right)\left(\begin{matrix}71\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{71}&\frac{7}{71}\\\frac{8}{71}&-\frac{5}{71}\end{matrix}\right)\left(\begin{matrix}71\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{71}\times 71+\frac{7}{71}\times 10\\\frac{8}{71}\times 71-\frac{5}{71}\times 10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{283}{71}\\\frac{518}{71}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{283}{71},y=\frac{518}{71}
Tangohia ngā huānga poukapa x me y.
5x+7y=71,8x-3y=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8\times 5x+8\times 7y=8\times 71,5\times 8x+5\left(-3\right)y=5\times 10
Kia ōrite ai a 5x me 8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
40x+56y=568,40x-15y=50
Whakarūnātia.
40x-40x+56y+15y=568-50
Me tango 40x-15y=50 mai i 40x+56y=568 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
56y+15y=568-50
Tāpiri 40x ki te -40x. Ka whakakore atu ngā kupu 40x me -40x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
71y=568-50
Tāpiri 56y ki te 15y.
71y=518
Tāpiri 568 ki te -50.
y=\frac{518}{71}
Whakawehea ngā taha e rua ki te 71.
8x-3\times \frac{518}{71}=10
Whakaurua te \frac{518}{71} mō y ki 8x-3y=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
8x-\frac{1554}{71}=10
Whakareatia -3 ki te \frac{518}{71}.
8x=\frac{2264}{71}
Me tāpiri \frac{1554}{71} ki ngā taha e rua o te whārite.
x=\frac{283}{71}
Whakawehea ngā taha e rua ki te 8.
x=\frac{283}{71},y=\frac{518}{71}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}