Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x+6y=1,5x+y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+6y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-6y+1
Me tango 6y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-6y+1\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{6}{5}y+\frac{1}{5}
Whakareatia \frac{1}{5} ki te -6y+1.
5\left(-\frac{6}{5}y+\frac{1}{5}\right)+y=1
Whakakapia te \frac{-6y+1}{5} mō te x ki tērā atu whārite, 5x+y=1.
-6y+1+y=1
Whakareatia 5 ki te \frac{-6y+1}{5}.
-5y+1=1
Tāpiri -6y ki te y.
-5y=0
Me tango 1 mai i ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua ki te -5.
x=\frac{1}{5}
Whakaurua te 0 mō y ki x=-\frac{6}{5}y+\frac{1}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{1}{5},y=0
Kua oti te pūnaha te whakatau.
5x+6y=1,5x+y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&6\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&6\\5&1\end{matrix}\right))\left(\begin{matrix}5&6\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\5&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&6\\5&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\5&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\5&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-6\times 5}&-\frac{6}{5-6\times 5}\\-\frac{5}{5-6\times 5}&\frac{5}{5-6\times 5}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{25}&\frac{6}{25}\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{-1+6}{25}\\\frac{1-1}{5}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{5},y=0
Tangohia ngā huānga poukapa x me y.
5x+6y=1,5x+y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5x-5x+6y-y=1-1
Me tango 5x+y=1 mai i 5x+6y=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y-y=1-1
Tāpiri 5x ki te -5x. Ka whakakore atu ngā kupu 5x me -5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=1-1
Tāpiri 6y ki te -y.
5y=0
Tāpiri 1 ki te -1.
y=0
Whakawehea ngā taha e rua ki te 5.
5x=1
Whakaurua te 0 mō y ki 5x+y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{1}{5}
Whakawehea ngā taha e rua ki te 5.
x=\frac{1}{5},y=0
Kua oti te pūnaha te whakatau.