Whakaoti mō x, y
x=-3
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x+6y=-3,3x+7y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+6y=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-6y-3
Me tango 6y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-6y-3\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{6}{5}y-\frac{3}{5}
Whakareatia \frac{1}{5} ki te -6y-3.
3\left(-\frac{6}{5}y-\frac{3}{5}\right)+7y=5
Whakakapia te \frac{-6y-3}{5} mō te x ki tērā atu whārite, 3x+7y=5.
-\frac{18}{5}y-\frac{9}{5}+7y=5
Whakareatia 3 ki te \frac{-6y-3}{5}.
\frac{17}{5}y-\frac{9}{5}=5
Tāpiri -\frac{18y}{5} ki te 7y.
\frac{17}{5}y=\frac{34}{5}
Me tāpiri \frac{9}{5} ki ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{17}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{6}{5}\times 2-\frac{3}{5}
Whakaurua te 2 mō y ki x=-\frac{6}{5}y-\frac{3}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-12-3}{5}
Whakareatia -\frac{6}{5} ki te 2.
x=-3
Tāpiri -\frac{3}{5} ki te -\frac{12}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-3,y=2
Kua oti te pūnaha te whakatau.
5x+6y=-3,3x+7y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&6\\3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&6\\3&7\end{matrix}\right))\left(\begin{matrix}5&6\\3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&7\end{matrix}\right))\left(\begin{matrix}-3\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&6\\3&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&7\end{matrix}\right))\left(\begin{matrix}-3\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&7\end{matrix}\right))\left(\begin{matrix}-3\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-6\times 3}&-\frac{6}{5\times 7-6\times 3}\\-\frac{3}{5\times 7-6\times 3}&\frac{5}{5\times 7-6\times 3}\end{matrix}\right)\left(\begin{matrix}-3\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{17}&-\frac{6}{17}\\-\frac{3}{17}&\frac{5}{17}\end{matrix}\right)\left(\begin{matrix}-3\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{17}\left(-3\right)-\frac{6}{17}\times 5\\-\frac{3}{17}\left(-3\right)+\frac{5}{17}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-3,y=2
Tangohia ngā huānga poukapa x me y.
5x+6y=-3,3x+7y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 5x+3\times 6y=3\left(-3\right),5\times 3x+5\times 7y=5\times 5
Kia ōrite ai a 5x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
15x+18y=-9,15x+35y=25
Whakarūnātia.
15x-15x+18y-35y=-9-25
Me tango 15x+35y=25 mai i 15x+18y=-9 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
18y-35y=-9-25
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-17y=-9-25
Tāpiri 18y ki te -35y.
-17y=-34
Tāpiri -9 ki te -25.
y=2
Whakawehea ngā taha e rua ki te -17.
3x+7\times 2=5
Whakaurua te 2 mō y ki 3x+7y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+14=5
Whakareatia 7 ki te 2.
3x=-9
Me tango 14 mai i ngā taha e rua o te whārite.
x=-3
Whakawehea ngā taha e rua ki te 3.
x=-3,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}