Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x+3y-4=34,-3x+5y-18=34
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+3y-4=34
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x+3y=38
Me tāpiri 4 ki ngā taha e rua o te whārite.
5x=-3y+38
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-3y+38\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{3}{5}y+\frac{38}{5}
Whakareatia \frac{1}{5} ki te -3y+38.
-3\left(-\frac{3}{5}y+\frac{38}{5}\right)+5y-18=34
Whakakapia te \frac{-3y+38}{5} mō te x ki tērā atu whārite, -3x+5y-18=34.
\frac{9}{5}y-\frac{114}{5}+5y-18=34
Whakareatia -3 ki te \frac{-3y+38}{5}.
\frac{34}{5}y-\frac{114}{5}-18=34
Tāpiri \frac{9y}{5} ki te 5y.
\frac{34}{5}y-\frac{204}{5}=34
Tāpiri -\frac{114}{5} ki te -18.
\frac{34}{5}y=\frac{374}{5}
Me tāpiri \frac{204}{5} ki ngā taha e rua o te whārite.
y=11
Whakawehea ngā taha e rua o te whārite ki te \frac{34}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{5}\times 11+\frac{38}{5}
Whakaurua te 11 mō y ki x=-\frac{3}{5}y+\frac{38}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-33+38}{5}
Whakareatia -\frac{3}{5} ki te 11.
x=1
Tāpiri \frac{38}{5} ki te -\frac{33}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=11
Kua oti te pūnaha te whakatau.
5x+3y-4=34,-3x+5y-18=34
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&3\\-3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}38\\52\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&3\\-3&5\end{matrix}\right))\left(\begin{matrix}5&3\\-3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\-3&5\end{matrix}\right))\left(\begin{matrix}38\\52\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&3\\-3&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\-3&5\end{matrix}\right))\left(\begin{matrix}38\\52\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\-3&5\end{matrix}\right))\left(\begin{matrix}38\\52\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-3\left(-3\right)}&-\frac{3}{5\times 5-3\left(-3\right)}\\-\frac{-3}{5\times 5-3\left(-3\right)}&\frac{5}{5\times 5-3\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}38\\52\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te poukapa kōaro ko \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kia tuhia anō ai te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{34}&-\frac{3}{34}\\\frac{3}{34}&\frac{5}{34}\end{matrix}\right)\left(\begin{matrix}38\\52\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{34}\times 38-\frac{3}{34}\times 52\\\frac{3}{34}\times 38+\frac{5}{34}\times 52\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\11\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=11
Tangohia ngā huānga poukapa x me y.
5x+3y-4=34,-3x+5y-18=34
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3\times 5x-3\times 3y-3\left(-4\right)=-3\times 34,5\left(-3\right)x+5\times 5y+5\left(-18\right)=5\times 34
Kia ōrite ai a 5x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
-15x-9y+12=-102,-15x+25y-90=170
Whakarūnātia.
-15x+15x-9y-25y+12+90=-102-170
Me tango -15x+25y-90=170 mai i -15x-9y+12=-102 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-9y-25y+12+90=-102-170
Tāpiri -15x ki te 15x. Ka whakakore atu ngā kupu -15x me 15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-34y+12+90=-102-170
Tāpiri -9y ki te -25y.
-34y+102=-102-170
Tāpiri 12 ki te 90.
-34y+102=-272
Tāpiri -102 ki te -170.
-34y=-374
Me tango 102 mai i ngā taha e rua o te whārite.
y=11
Whakawehea ngā taha e rua ki te -34.
-3x+5\times 11-18=34
Whakaurua te 11 mō y ki -3x+5y-18=34. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x+55-18=34
Whakareatia 5 ki te 11.
-3x+37=34
Tāpiri 55 ki te -18.
-3x=-3
Me tango 37 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -3.
x=1,y=11
Kua oti te pūnaha te whakatau.