Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x+3y=6,2x+7y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+3y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-3y+6
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-3y+6\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{3}{5}y+\frac{6}{5}
Whakareatia \frac{1}{5} ki te -3y+6.
2\left(-\frac{3}{5}y+\frac{6}{5}\right)+7y=9
Whakakapia te \frac{-3y+6}{5} mō te x ki tērā atu whārite, 2x+7y=9.
-\frac{6}{5}y+\frac{12}{5}+7y=9
Whakareatia 2 ki te \frac{-3y+6}{5}.
\frac{29}{5}y+\frac{12}{5}=9
Tāpiri -\frac{6y}{5} ki te 7y.
\frac{29}{5}y=\frac{33}{5}
Me tango \frac{12}{5} mai i ngā taha e rua o te whārite.
y=\frac{33}{29}
Whakawehea ngā taha e rua o te whārite ki te \frac{29}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{5}\times \frac{33}{29}+\frac{6}{5}
Whakaurua te \frac{33}{29} mō y ki x=-\frac{3}{5}y+\frac{6}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{99}{145}+\frac{6}{5}
Whakareatia -\frac{3}{5} ki te \frac{33}{29} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{15}{29}
Tāpiri \frac{6}{5} ki te -\frac{99}{145} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{15}{29},y=\frac{33}{29}
Kua oti te pūnaha te whakatau.
5x+3y=6,2x+7y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&3\\2&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&3\\2&7\end{matrix}\right))\left(\begin{matrix}5&3\\2&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\2&7\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&3\\2&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\2&7\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\2&7\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-3\times 2}&-\frac{3}{5\times 7-3\times 2}\\-\frac{2}{5\times 7-3\times 2}&\frac{5}{5\times 7-3\times 2}\end{matrix}\right)\left(\begin{matrix}6\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{29}&-\frac{3}{29}\\-\frac{2}{29}&\frac{5}{29}\end{matrix}\right)\left(\begin{matrix}6\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{29}\times 6-\frac{3}{29}\times 9\\-\frac{2}{29}\times 6+\frac{5}{29}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{29}\\\frac{33}{29}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{15}{29},y=\frac{33}{29}
Tangohia ngā huānga poukapa x me y.
5x+3y=6,2x+7y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 5x+2\times 3y=2\times 6,5\times 2x+5\times 7y=5\times 9
Kia ōrite ai a 5x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
10x+6y=12,10x+35y=45
Whakarūnātia.
10x-10x+6y-35y=12-45
Me tango 10x+35y=45 mai i 10x+6y=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y-35y=12-45
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-29y=12-45
Tāpiri 6y ki te -35y.
-29y=-33
Tāpiri 12 ki te -45.
y=\frac{33}{29}
Whakawehea ngā taha e rua ki te -29.
2x+7\times \frac{33}{29}=9
Whakaurua te \frac{33}{29} mō y ki 2x+7y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+\frac{231}{29}=9
Whakareatia 7 ki te \frac{33}{29}.
2x=\frac{30}{29}
Me tango \frac{231}{29} mai i ngā taha e rua o te whārite.
x=\frac{15}{29}
Whakawehea ngā taha e rua ki te 2.
x=\frac{15}{29},y=\frac{33}{29}
Kua oti te pūnaha te whakatau.